

 Open Computer-based Assessment with the CBA ItemBuilder

 Ulf Kroehne

 2024-01-11

Preface

This book describes the CBA ItemBuilder, a tool implemented over the last years for developing and delivering complex items and tasks. The CBA ItemBuilder is a development environment for assessments enabling researchers, domain experts, and teachers to develop complex items without requiring any specific programming skills. Possible item types include but are not limited to: web environment simulations (including browser, search engines, etc.), desktop application(s) simulation and simulations using finite-state machines. The CBA ItemBuilder has been used in several national and international projects and is constantly being improved. It is available free of charge for non-commercial projects. This book describes how to use the CBA ItemBuilder for different user groups involved in the use of technology-based assessments as part of Open Educational Resources.

[image: Creative Commons License]

The latest version can be found online as pdf, epub or as html at github.

Suggested Citation:

Kroehne, U. (2023). Open Computer-based Assessment with the CBA ItemBuilder.

 DIPF, Frankfurt am Main, Germany. https://doi.org/10.5281/zenodo.10359757

Why read this book

This book is for item authors and researchers preparing and organizing assessments or analyzing the result data or log data from computer-based assessments.

For the following use-cases we have created section that allow to reach a particular goal without the need to read the entire book:

	Quick start section 1.4 describes how CBA ItemBuilder project files that contain one or multiple tasks with single items or units can be previewd. If you are new to computer-based task authoring tools, you can download existing ItemBuilder projects, open them in the CBA ItemBuilder and use the preview function to view the items ‘live’. This allows, for instance, item reviewers to use the CBA ItemBuilder to view (and review) items.

	Quick start section 1.5 provides the necessary information to explore the item scores, that are created by a particular task defined in an CBA ItemBuilder project file. This allows, for instance, domain experts to verify the scoring of items, that is to relate test-taker’s responses to result variables provided by the items.

	Quick start section 1.6 shows how identifiers that can be found in (log) data can be linked to parts of the instrument, as it is required for scientists after obtaining data collected with the CBA ItemBuilder. This allows, for intsance, using mock items to explore interactive computer-based tasks.

	Quick start section 1.7 explains how to revise existing items (e.g., adapt, adjust, modify or improve content). The ability to adapt the content of computer-based items without having to consult with the programmers or designers of the item material is one of the important prerequisites for open computer-based assessments.

	Quick start section 1.8 summarizes how programmers can integrate content generated with the CBA ItemBuilder into their Web application. Moreover, it is explained how HTML content can be used as part of CBA ItemBuilder projects.1

	Quick start section 3.3 gives hands-on instruction how to create simple single-page items using the CBA ItemBuilder. This section is intended for users who want to familiarize themselves with the CBA ItemBuilder while using the software.

	Quick start section 7.1 provides an hands-on example how to use the assessment components created in section 3.3 to realize a typical offline deployment.

All quick start sections are cross-referenced to the relevant sections in the main text, allowing readers to dive deeper into the subject matter if needed.

Structure of the book

For researchers, teachers, lecturers, content experts, students and Ph.D. students, student assistants, and interested readers who want to go deeper into the use of the CBA ItemBuilder, the book starts with a short primer on computer-based assessments in chapter 2.

Building on the objectives and some basic vocabulary, chapter 3 then describe the implementation of assessment components using static components provided by the CBA ItemBuilder. The static content mainly covers the visible elements of items, instruction pages, etc., and includes the development of items using multiple pages and dialogs.

If the displayed task content should change either time-controlled or in reaction to observed test-taker behavior, the items become dynamic. Chapter 4 deals with the enrichment of assessment components, such as items, with dynamic content.

Chapter 5 of this book is then devoted in detail to the evaluation of answers, the so-called Scoring of computer-based items.

For users who would like to plan and create new assessments, chapter 6 provides further tips and suggested solutions for practical challenges in creating computer-based assessments using the CBA ItemBuilder.

Chapter 7 summarizes possibilities to combine single CBA ItemBuilder project files to complete assessments and introduces software tools and platforms to deliver assessments in practice.

Chapter 8 finally deals with workflows, i.e., typical processes for preparing, testing, delivering, and archiving computer-based assessments.

The book concludes with a discusses of the CBA ItemBuilder as a tool in the context of open science and reproducible research.

Contributors

Starting with version 9.0 of the CBA ItemBuilder, item-projects created with this authoring tool can be flexibly integrated into various HTML-based execution environments without the need for special server components. I have taken this milestone as an opportunity to combine the existing documentation and the CBA ItemBuilder Wiki in a new user book-length documentation.

This book would not be possible without the support of

	all previous and current CBA ItemBuilder users,2

	Frank Goldhammer (Center for Technology-based Assessment), Eckhard Klieme (retired Director of the department of Educational Quality and Evaluation and Research Fellow at DIPF) and Marc Rittberger (Director of the Information Center for Education),

	Robert Baumann, Ingow Barkow, Paul Libbrecht and Daniel Schiffner (IT engineers at the Center for Technology-Based Assessment),

	Margit Mikula, Marisa Herrmann, Gabriele Gissler and Britta Upsing (CBA Item author support and early users of the CBA ItemBuilder at the Center for Technology-Based Assessment),

	Rachel Ghebrehawariat and Angelika Sichma (project assistants at the Center for Technology-Based Assessment),

	all former and current doctoral students at the Center for Technology-Based Assessment,

	student assistants at the Center for Technology-Based Assessment,

	and many others.

The idea of creating an authoring tool for the implementation of complex interactive items goes back to Jean Paul Reef and was supervised conceptually and organizationally by Heiko Rölke in the first years at the Center for Technology-based Assessment at the DIPF (Rölke 2012).

Special thanks go to the long-standing cooperation partners Softcon GmbH / naragro AG (Michel Dorochevsky, Constantin von Kirschten and the entire team).

Acknowledgments

For the development of the CBA ItemBuilder, in addition to the programmers and users, special thanks must also be given to the organizations and projects that have used and funded the development.

	The CBA ItemBuilder is software designed for item authors who want to use or create components for computer-based assessment. Therefore, the CBA ItemBuilder is not a tool for programmers who can create web-based assessments with their development environments without the CBA ItemBuilder.↩︎

	You can contribute to the book by making edits and pull requests on github.↩︎

1 Introduction

Computer-based assessment (CBA)1 has gained importance in various research fields that investigate human education, cognition, affect, experience, and human behavior. The success of CBA is due to many advantages for testing in general and for measuring competencies and skills in particular (see chapter 2). However, the development of computer-based tests requires either programming skills or software tools. Various successful software tools exist for computer-based surveys and questionnaires (e.g., limesurvey), for IMS QTI-based tests (e.g., TAO) and for interactive e-learning content (e.g., H5P). Data collection can also be implemented using software for electronic data capture (e.g., REDcap), for psychological experiments (e.g., PsychoPy or Open Sesame) or using the open source statistical software environment R (e.g., Concerto, formr or even Shiny). The type of assessments that can be created is often limited by the software tools or the developers’ resources and programming skills.

However, the implementation of CBA can be laborious and expensive. As a result, applications using CBA make less use of the possibilities of the existing technology, and how constructs are measured is affected by the available features of existing tools. Moreover, when content experts write items on paper and technical experts implement the assessment material on digital platforms, it becomes more challenging to unlock the diagnostic potential of CBA.

CBA ItemBuilder: In this book we will introduce the CBA ItemBuilder, an authoring tool for computer-based assessment that enables content experts to become test authors and to design different item types with a graphical editor. The CBA ItemBuilder is created for persons with no, or with no specific programming experiences. Researchers, (PhD)-students, content experts and teachers with no specific background in web development can use the CBA ItemBuilder to create and implement complex items, after following some of the quick start tutorials provided in this book, and after exploring some of the examples in the CBA ItemBuilder.

The CBA ItemBuilder, as a specialized development environment for assessment material, provides a graphical page designer. The CBA ItemBuilder allows creating items with multiple pages by placing elements (such as texts, radio buttons, buttons, etc.) to specific locations in a visual editor (called Page Editor, see section 3.1.3).2

The CBA ItemBuilder is an open-source tool used in various contexts to create assessment content. It is particularly suitable for implementing complex interactive item formats (so-called technology-enhanced items, see section 2.3) but can also be utilized for simple item types. The content created with the CBA ItemBuilder can be used together with various tools, such as TAO (see section 7.4).

Item Authors: Item authors, i.e., content experts or researchers, can use this graphical editor to design one or several items by creating pages with images, texts or videos, implementing special features for test-takers like timers or instant feedback, defining rules for (automatic) scoring and create complex items with dynamic behavior (see section 2.11.1 for a more detailed discussion of the possible division of labor for the creation of computer-based assessment content by item developers).

The available features of the CBA ItemBuilder are permanently extended and updated. Features described in this book match version 10.0.0 of the CBA ItemBuilder and covers many of the features available in this version.3

Software Developers: The CBA ItemBuilder supports not all options to create interactive items. However, the lack of functionalities or features does not necessarily mean that the CBA ItemBuilder can not be used for large parts of creating computer-based assessment content. Instead, software developers can be involved in implementing the missing functionality as an HTML5/JavaScript. HTML5/JavaScript can be integrated and used via iframes (or in the component model of the CBA ItemBuilder ExternalPageFrames). Moreover, items generated with the CBA ItemBuilder can also be embedded into other environments that render content as HTML5/JavaScript. Section 1.8 summarizes the important things developers need to know about these two use cases.

1.1 Installation & Requirements

While the items created with the CBA ItemBuilder can be used in different web-based environments (see chapter 7), a desktop application is necessary for designing, authoring, and editing the CBA ItemBuilder project files. An install-wizard as shown in Figure 1.1 is provided to install the CBA ItemBuilder to a default location that does not require local administrator privileges.4

(ref:CBAItemBuilderInstallationExample) Item illustrating Installation Wizard (html|ib).

[image: (ref:CBAItemBuilderInstallationExample)]

FIGURE 1.1: (ref:CBAItemBuilderInstallationExample)

Before using the CBA ItemBuilder, the program must first be downloaded and installed locally. No administrator rights are required for the installation, but currently, CBA ItemBuilder is provided only for Windows computers.

System Requirements: Current Windows operating systems (Windows 8, 10 and 11) are supported. A computer with an SSD is recommended for fast and smooth operation. Minimal required disk space is 2 GB. Dual core CPU and at least 4 GB Ram are recommended.

Items are being created with the CBA ItemBuilder, a desktop application that requires a Windows operating systems. However, the created assessment components (so-called Tasks stored in CBA ItemBuilder Project Files) can be used in typical Web Browsers on any operation system and device type (including mobile devices). A build-in internal Rendering (see section 3.1.2) shows how pages will look like in a Web Browser and content created with the CBA ItemBuilder can be displayed in any Web Browser installed on the local computer using the Preview-feature (see section 1.4). The use of either Chrome, Firefox or the Chrome-based Edge browser is suggested.

To many technical termns? Note that this book contains a Glossary of Terms with short descriptions (see appendix 9).

Technical Configuration: The CBA ItemBuilder is configured using an so-called ini-file (cba-itembuilder.ini). This allows activating and deactivating specific features and running the CBA ItemBuilder in different environments. By default, the CBA ItemBuilder is expected to run without modifying the ini-file. Details can be found in the appendix (see appendix 10.4).

De-Installation: The de-installation of a previous version of the CBA ItemBuilder is (technically) not necessary. Copies of different versions of the CBA ItemBuilder can be installed on a computer in parallel. However, to de-install a previous version, just delete the CBA ItemBuilder folder or use the shortcut Uninstall CBA ItemBuilder created during the installation.

Manual Installation: For developers the CBA ItemBuilder is also delivered as zip archive without installer. To manually install the CBA ItemBuilder, extract the content of the zip archive to a local drive. The plain CBA ItemBuilder will run after unzipping the content, after starting the executable cba-itembuilder.exe. The CBA ItemBuilder will require a free port (by default 7070). If this port is not available, adjust the configuration in the file cba-itembuilder.ini (change: -Djetty.port={free port}, see appendix 10.4 for detail).

Multiple Versions: Multiple instances of CBA ItemBuilder can be installed in parallel on one computer (see section 6.8.8 for use cases).

1.2 Contact & Support

The CBA ItemBuilder is provided free of charge for non-commercial projects in the field of education (i.e., educational research, psychological diagnostics and related areas) by the Centre for Technology-Based Assessment (TBA), a scientific research and infrastructure center at DIPF | Leibniz Institute for Research and Information in Education.

To obtain the latest version of the CBA ItemBuilder, see information at the homepage of the Centre for Technology-Based Assessment.

1.3 Quick Start: Get the Right Version

The CBA ItemBuilder is continuously developed, so there are different program versions available. In order to reproduce the exact display of existing CBA ItemBuilder project, it might be necessary to use the exact same CBA ItemBuilder version and, if possible, the identical browser. The development of the software follows the paradigm that a) older CBA ItemBuilder project files can be opened with newer versions of the CBA ItemBuilder, but b) older versions of the CBA ItemBuilder cannot open project files saved with a newer version of the software. If project files created with an older version of the CBA ItemBuilder are opened in a newer version (a), the items are internally migrated to the newer version (see section 3.2.1 for details about this Migration).

Which Version to Choose? If you are starting from scratch and using CBA ItemBuilder for the first time, install the latest version. If you have existing items that you want to view in the preview (section 1.4), whose scoring you want to view (section 1.5) or whose log events you want to explore (section 1.6), you could also consider using the version with which these items were created and tested.5 If you are planning to update or revise existing items (see section 1.7) for an upcoming assessment, you might want to use the latest version of the CBA ItemBuilder.

How to Start: After installing the CBA ItemBuilder, it can be started by double-clicking the icon or the executable file cba-itembuilder.exe in the installation directory (see section 1.1). The CBA ItemBuilder will allow editing of one CBA ItemBuilder project file at a time, and typically only one instance of the CBA ItemBuilder will be opened at the same time.6

Main Window: The Main Window of the CBA ItemBuilder consists of at different areas (see Figure 1.2): On the left side the Project View is located, with the Component Edit below. The gray area right to the Project View is reserved for various editors, like the Page Editor. If requested, additional views can be shown on the right part of the main window.

[image: CBA ItemBuilder *Main Window*.]

FIGURE 1.2: CBA ItemBuilder Main Window.

The Help menu of the main menu contains the entry About, that shows the version information (see Figure 1.3).

[image: CBA ItemBuilder *About*-Dialog.]

FIGURE 1.3: CBA ItemBuilder About-Dialog.

Migration: It is important that CBA ItemBuilder projects are never opened with previous version, i.e. versions that are older than the last version that was used to save the CBA ItemBuilder project file. However, opening CBA ItemBuilder projects with newer version is possible. If CBA ItemBuilder projects are opened and saved with a newer version of CBA ItemBuilder, a so-called Migration is done automatically.7 Once a project file is migrated (i.e, opened and saved) to a particular newer version, no version of the CBA ItemBuilder older than that particular version can open the migrated project file.

1.4 Quick Start: Preview Items

Once the CBA ItemBuilder has been started, Project Files can be opened and presented using the so-called Preview feature. To preview an item means opening the project file within the CBA ItemBuilder desktop application and requesting the preview feature, which will bring up a web browser that shows a particular task.

[image: Example item to test *Preview* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ExampleItemToPreview/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ExampleItemToPreview.zip)).]

FIGURE 1.4: Example item to test Preview (html|ib).

Please note the two links in the figure caption of Figure 1.1. The link html gives access to the HTML representation of the CBA ItemBuilder item shown in the particiular Figure 1.1 and the link ib refers to the CBA ItemBuilder project file that can be downloaded and opened with the CBA ItemBuilder.

In the following, we assume that you have either already received CBA ItemBuilder project files with item material. You could have obtained the CBA ItemBuilder project file from a collaborator, or a research data center (e.g., DIPF FDZ) or that you are starting to explore example projects from this book that can be downloaded from links provided in the figure’s captions (html|ib).

1.4.1 Basic Terminology

The CBA ItemBuilder is used to create and manage item projects. In order to implement a typical computer-based assessment, multiple project files are created and edited with the CBA ItemBuilder. If an assessment is created by several people, the individual project files can be shared and edited with one instance of the CBA ItemBuilder of the appropriate version. To see how the content of a project file actually looks like in the assessment, the Preview function can be used.

Project File: Projects files are zip archives that can be opened, edited, or modified and previewed with the CBA ItemBuilder desktop application to see the content of the assessment material that is included in that file. All content that belongs to an item project is stored in the zip archives, and the zip archives should be modified only with the CBA ItemBuilder as editor.

Project files contain all the information that belongs to a particular part of an assessment (e.g., an item, a unit, an instruction, etc.). More specifically, project files include:

	The visual design of the item in terms of one or multiple pages, input elements, graphics etc. is included in the project file (see section 3.3).

	At least one starting point (referred to as the entry-point defined as a so-called Task, see section 3.6 for details) must be defined. If multiple parts of the assessment are defined in one project file, multiple Tasks can be defined.

	The internal logic controlling the behavior of the item (using so-called finite-state machine, see section 4.4) are included directly in the project file.

	The definition of potential scoring rules (see chapter 5) are embedded in the project files.

	Additional resources (such as images, sound, and video files, see section 3.10.1) required to render the assessment can be included in the project files.

Assessments implemented with the CBA ItemBuilder use one or multiple project files. The option of previewing CBA ItemBuilder project files, presented in this section, allows to view and inspect parts of assessments outside and independently from the delivery platform.

After a project file has been saved locally on the computer on which the CBA ItemBuilder is installed, it can be opened to start the preview. A typical file menu (see Figure 1.5) gives access to the basic functions for creating new projects (New project) opening existing CBA ItemBuilder project files (Open project), for saving a project file (Save), for renaming project files (Save As ...), and for closing the current project file (Close project).8

[image: CBA ItemBuilder `File`-Menu.]

FIGURE 1.5: CBA ItemBuilder File-Menu.

Project Files, i.e., zip archives containing parts of assessments, can be copied, moved, and shared like ordinary files. Project files can also be managed using version control tools (e.g., GIT or SVN, see section 8.3.2).

One specific feature needs to be mentioned briefly (see section 3.2.1 for more information):

CBA ItemBuilder Project Files are zip archives with a file name. In addition, each project has a Project Name. Project and File Name can be different, but it some software tools used for test assembly and deployment (see chapter 7) might require that the Project Name is identical to the File Name (see section 3.2.1).

The zip archives created by the CBA ItemBuilder as Project Files contain everything needed to develop and use a particular assessment component, including the generated configuration files required for deployment (see chapter 7 for details). This configuration or code is automatically generated when the item is saved using the CBA ItemBuilder, and it is specific to a particular version of the CBA ItemBuilder.

1.4.2 Preview Item in Browser

The best way to get to know the CBA ItemBuilder is with concrete examples. In this manual all embedded items are linked as CBA ItemBuilder project files. As soon as you have downloaded a concrete CBA ItemBuilder project file and saved it as a zip archive locally on your computer, it can be opened with the CBA ItemBuilder. This link provides access to the CBA ItemBuilder project file shown in Figure 1.4.

Preview: The content of a CBA ItemBuilder project file can be displayed in a web browser in the way, the content will be presented in the actual assessment. This feature of the CBA ItemBuilder is called Preview.

There are several ways to request the preview for an opened CBA ItemBuilder project file. The easiest way is to use the main menu (Project > Preview project see first entry in Figure 1.6).

[image: CBA ItemBuilder `Project`-Menu.]

FIGURE 1.6: CBA ItemBuilder Project-Menu.

After calling the preview via the menu (or using the icon of the Toolbar, see section 3.1.1), the Preview dialog appears (see Figure 1.7). This dialog allows selecting which part of the project file should be previewed. Typically a task is previewed, and often a project file contains only one task. In this case, the default selection (the first Task will be previewed, see Task01 in the example shown in Figure 1.7) must be confirmed by pressing OK.

[image: CBA ItemBuilder *Preview*-Dialog.]

FIGURE 1.7: CBA ItemBuilder Preview-Dialog.

CBA ItemBuilder project files can contain multiple entry points, called Tasks (see section 3.6 for details). Each Task can select a different parts of an CBA ItemBuilder project file by specifying the starting Page.9 If multiple Tasks are defined, the Preview follows navigation request for next and previous Tasks and shows the Tasks according to the order, in which they are defined within the CBA ItemBuilder project file. The Preview will apply proportional scaling if requested using the Scaling Options (see section 3.2.2 for details).

CBA ItemBuilder project files contain one or multiple Tasks. Tasks are the entry points that are used for assessments. Hence, the preview of a particular Task is typically the right choice.

The preview dialog also can be used to preview selected pages directly. This option is only of importance during the development of assessment material (see chapter 3). Moreover, the dialog also offers the possibility to preview the project if no task is defined, using the first defined page as the (temporary) entry point.

Which (Web-)Browser should be use for Preview? The preview of the CBA ItemBuilder uses the so-called default browser of a computer to show the assessment materials such as items, if configured as Systems Default Browser in the dialog Preferences in the section CBA Preview (see Figure 1.8):

[image: CBA ItemBuilder *Preferences*-Dialog.]

FIGURE 1.8: CBA ItemBuilder Preferences-Dialog.

The dialog shown in Figure 1.8 also shows additional settings, such as the auto-save configuration (see section 3.2.1) and the hot keys used for Scoring Debug Window (see section 1.5.2), the Trace Debug Window (see section 1.6.2) and the State Machine Debug Window (see chapter 4).

If different browsers are expected, given a particular delivery strategy, it should be ensured that the items, including the externally integrated components, are compatible with the used browsers. Section 8.4.1 describes how the preview can be used in different browsers to check the cross-browser compatibility locally.

Automatic Start (Autostart): Web browsers prevent audio and video files from playing before the first user interaction. This security setting is not a restriction in practice since a login or welcome page is usually displayed before the first item. After clicking a button on this page, for example, audio and video components can then be started automatically on all subsequent pages. However, this does not apply to the preview, which uses a new browser or browser tab. The Preview can be requested with a log-in dialog (see the checkbox Show login dialog in Figure 1.7) to allow the preview audio and video components with auto-play. Otherwise, a warning message is shown as displayed in Figure 1.9.

[image: Warning about autostart of audio and video components.]

FIGURE 1.9: Warning about autostart of audio and video components.

Summary: With the CBA ItemBuilder, assessment components can be created as project files. Complete assessments with multiple tests or booklet designs with rotations (see section 2.7.2) usually consist of a sequence of many assessment components (i.e., several project files with the corresponding tasks as the entry points). Using the preview function described in this section, the individual assessment components stored in a particular Project File can be displayed and checked directly from the CBA ItemBuilder. Thus, the components of assessments can be viewed even outside the sometimes complex rotation designs.

1.5 Quick Start: Explore Scoring

This section is intended for readers who already have CBA ItemBuilder project files and want to preview and check scoring with CBA ItemBuilder.

Viewing assessment content created with the CBA ItemBuilder in the preview (see section 1.4) also allows to view the built-in automatic scoring. A possibility to access the automatic scoring of tasks is useful, for example, to check which scoring results from a specific input or a certain test-taking behavior.

A possibility to examine the automatic scoring of computer-based items is essential for creating assessments and interpreting data from computer-based tests.

In the following, it is assumed that assessment content created with the CBA ItemBuilder is available that contains automatic scoring rules. This section aims to provide the required information for exploring the implemented scoring in project files, either for testing or understanding available instruments.

1.5.1 Basic Terminolgy

A majority of assessments conducted for the different use cases (see chapter 2) can be described as a data collection based on responses or test-taking behavior within a computerized environment. Accordingly, it can be useful to think of the result of assessments as a data set, typically with persons in rows and variables in columns.

Result Variables vs. Score Variables: For each person, the data set should contain the scored final answer to each item (e.g., a score variables either 00 for wrong, 11 for correct). The data set could also include a variable for the selected answer option (i.e., a raw result variable). Result variables and score variables can be defined for simple single choice tasks (see section 2.2) simply by naming the possible and correct answer option(s). For more complex computer-based items, the definition of a result variable may already rely on several input elements or may require the use of information from the test editing process.

Typically, score variables assign credits (no credit and full credit for dichotomously scored items and one or multiple additional partial credits for polytomously scored items) to possible result variables’ values. In other words, once all possible values of result variables are defined, the definition of the scoring variables is also almost done. Unfortunately, for polytomously scored items, defining partial credits is not necessarily possible without taking into account empirical data to make sure the intended order of partial credits holds empirically.

Manual Scoring vs. Automatic Scoring: An important distinction concerns the difference between automatically scored answers and manually scored answers. The integrated handling of scoring definitions implemented in CBA ItemBuilder concerns automatic scoring of mainly closed answers. This refers to responses by selecting an input element, selecting a page, entering a particular state, etc. For free text answers, the automatic scoring is limited to the identification of given text by means of regular expressions.

Classes as Variables: Each variable, i.e., each column in the result data set, is defined in the CBA ItemBuilder as a so-called class. Each part of an assessment, which is defined as a CBA ItemBuilder project file, can generate any number of result variables and the corresponding classes are defined within the tasks. Accordingly, the classes form the columns of the result data set. Thereby variables can either have categorical values (called hit-conditions) or take over character strings into the result variables (called result-texts).

Hit-Conditions as Values: Hit-conditions are logical expressions, which combine one or more possible inputs of test-takers. If, for instance, the correct answer option is selected in a single choice item, this can be indicated by a first hit-condition. If a wrong answer option is selected, this can be indicated by a second hit-condition. If the two hit conditions are defined so that either one or the other condition is active, then the two hit-conditions form the values of one variable. The assignment of hits to classes specifies this relationship of hit-conditions as the variable’s values. The CBA ItemBuilder provides a variety of options to define hit-conditions (see section 5.3).

Missing Values: Besides the hit conditions defined for specific constellations of responses, missing answers can find special consideration. For distinguishing reasons why replies or responses are not available for a particular test-taker in the result data set, hits can also be defined for so-called missing values (see section 2.5.2 for more details).

Text Responses: Beyond categorical variables, whose values can be defined by hit conditions, there are also answer variables that contain the text answers. For such variables, the sorting definition consists of specifying from which input elements the result text should be taken (see section 5.3.10).

Codebook vs. Scoring Definition: For the result data set of a computer-based assessment, all used variables should have so-called variable labels. For importing the data sets into statistical programs like SPSS, Stata, or R, the definition of a data type for each variable can also be useful. This information per variable is typically stored in so-called codebooks. Codebooks for CBA ItemBuilder tasks should define for each class whether it should be used as a categorical variable (i.e., hit conditions are used as values) or whether it uses the result text (i.e., the variable represents a text response). For categorical variables, the value labels can then also be defined in the codebook. The possible values of categorical variables are defined as hit conditions. For each hit condition, a value label and, if necessary, a numerical value must be defined in the codebook, with which the values of the categorical result variables should be represented in the final result data set. For CBA ItemBuilder tasks in assessments, the codebook represents a translation of the scoring definitions into result data sets. The next section describes how the scoring definition for CBA ItemBuilder tasks can be checked and displayed directly in the embedded preview, using the Scoring Debug Window.

1.5.2 Scoring Debug Window

Direct access to verify the scoring definition based on classes and hit-conditions for a running item is provided as the so-called Scoring Debug Window. If configured, this window can be called directly by a key combination (default is Strg / Ctrl + S, see appendix 10.4 for details) as soon as the preview for a Task or a Project is requested as described in section 1.4.2. The Scoring Debug Window is available when a Task or Project is previewed using the CBA ItemBuilder.10

[image: CBA ItemBuilder *Scoring Debug Window*.]

FIGURE 1.10: CBA ItemBuilder Scoring Debug Window.

Figure 1.10 shows a screenshot of the Scoring Debug Window for the example item shown in Figure 1.11. The Scoring Debug Window is organized into three sections:

	The first section displays summaries for the entire task. This information can be useful for simple items (see section 5.4). Regarding the general description of automatic scoring using the CBA ItemBuilder, provided in this section, the task summaries are not relevant.

	The second section contains the list of all hits assigned to classes and, if used, the result text. This list contains the information described in the previous section. The interpretation of these outputs is described in detail by means of examples in the following section.

	Finally, the third section, not described here in detail (see section 5.3.2), contains potentially existing miss-conditions.

The three lines of the hits table in figure 1.10 can be read as follows: Line 1 shows that the hit Question1_Wrong is active, which is assigned to the class Variable1Score. Line 2 says that the hit Question2_Wrong is active, which is assigned to the class Variable2Score. Line 3 finally shows that the hit Question3_Wrong is active, which is assigned to the class Variable3Score. As the hit names suggest, neither Question1, Question2 nor Question3 was answered correctly. For all three variables in the data set, the expected information would be that the respective question were answered wrong.

Figure 1.10 shows the Scoring Debug Window for the CBA ItemBuilder project file shown in Figure 1.11. For the shown task three questions are defined on one page. Question 1 is answered correctly if option C is selected. Question 2 is answered correctly if option A and B are selected. The correct answer for question 3 is D.

With the help of the Scoring Debug Window, it can now be checked that the correct answer also causes the hit, which shows a correct answer to be activated.

The Scoring Debug Window can be used to check which hit is active for each class at any given time. The Scoring Debug Window is available in the Preview (see section 1.4.2) and in the examples embedded in the online version of this book.

The active hit or miss as shown in the column Nameof the Scoring Debug Window or the provided Result text is used as value for a variable (see column Class).

Examples: The CBA ItemBuilder shown in Figure 1.11 can be used to play with the Scoring Debug Window. In this project, the scoring definition differentiates wrong vs. correct responses. Accordingly, with respect to the differentiation in score variables and result variables, Figure 1.11 only contains score variables. To understand this property, select different wrong answers to the three questions for the following item and check the scoring with the Scoring Debug Window. As you can see, there is a distinction between correct and wrong answers. Which wrong answers are selected for the three questions is not taken into account in the scoring.

[image: *Scoring*-example (score-variables, [html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/QuickStartScoringExample1/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/QuickStartScoringExample1.zip)).]

FIGURE 1.11: Scoring-example (score-variables, html|ib).

Figure 1.12 contains the identical three questions, but now with a scoring that contains result variables as well as score variables. A deployment platform that can handle CBA ItemBuilder tasks is expected to provide the variable as defined within the tasks. If the result data should contain variables that contain which answers were selected in addition to the variables for correct versus wrong answers, the result variables can be defined as part of the CBA ItemBuilder scoring.

For the Single Choice task (question 1), a hit shows the different possible choices (compare the hits Question1_OptionA, Question1_OptionB, Question1_OptionC, and Question1_OptionD which are all assigned to the class Question1).

Note, however, that for the Multiple Choice task (question 2), one class (i.e., one variable) is defined for each option. Accordingly, two hits for the class Variable2A show if option A for question 2 is selected (Question2A_Selected) or not selected (Question2A_NotSelected). One result variable is required for each option of a Multiple Choice task (see the classes Variable2A, Variable2B, Variable2C, and Variable2D). Moreover, as already shown in Figure 1.11 , the score variable for question 2 indicates if the two required options are selected (see hits Question2_Wrong and Question2_Correct for class Variable2Score).

Finally, for the Constructed Response task (question 3), the class Question3 only has one assigned hit (Question3). This hit, however, uses the so-called result_text()-operator (see section 5.3.10 for details). Using theresult_text()-operator causes the entered character to be displayed in the Result text column of the Scoring Debug Window. This illustrates that the text entered in the input field (here only one letter) can then be used for the result data set.

[image: *Scoring*-example extended (with result-variables, [html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/QuickStartScoringExample2/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/QuickStartScoringExample2.zip)).]

FIGURE 1.12: Scoring-example extended (with result-variables, html|ib).

Summary: The definition of automatic scoring of items is described in detail in Chapter 5. Accordingly, this section did not describe how to define scoring. But it was shown that with the help of the Scoring Debug Window in the preview of the CBA ItemBuilder, the defined scoring can be checked and displayed for different inputs. In order to check for existing ItemBuilder project files whether the integrated scoring works correctly, it is not necessary to check the various rotations of a test delivery with a booklet design. The checking of the scoring can be done separately for the individual assessment components.

1.6 Quick Start: Explore Log Events

This section is intended for readers who want to interpret log data of an assessment carried out with the CBA ItemBuilder. To be able to view live which log events are provided for which user interaction, the preview can also be used.

An important challenge in documenting log data is to enable secondary researchers to understand which user interactions within the assessment led to which (basic) log events.

To interpret log data of computer-based tests, some form of documentation is necessary. For assessments created with the CBA ItemBuilder, the CBA ItemBuilder project files can be used for documentation purposes (see section 8.7.2 for details), after sensitive item content is replaced with dummy text (image or media files).

1.6.1 Basic Terminology

If CBA ItemBuilder project files are available, researchers can inspect not only the scoring (see section 1.5) in the preview (see section 1.4), but also get an impression of the additional behavioral data created during the task execution.

Tasks shown in the CBA ItemBuilder Preview can also be used to inspect the recent events collected as log data.

Log Events: The following basic understanding of log events is necessary to assign the processing behavior to the log data. Log data consists of single log events. Log events can result from user interaction (e.g., clicks) or internal system changes (e.g., timers). In the context of assessments, log events always occur with an assignment to a person. There is always a person identifier associated with a log event (that can have different names such as actor, pupil, student, test-taker, respondent, etc.). Log events also always occur at a particular time. Accordingly, at least one timestamp is always associated with log events, indicating when the event occurred. Other timestamps that show, for instance, when the event was transmitted or received are possible but not mandatory for log events. The meaning of log events is encoded in the so-called event type (sometimes also denominated as event name). How events of a certain event type can be interpreted should be comparable for assessments using the same assessment platform. However, the meaning of identically named events may differ between different assessment platforms. An event of a particular event type that occurred at a specific time can be the central information in particular log data. However, events of a particular event type can also provide additional information. For example, a mouse-click event could inform about whether the right or left mouse button was clicked. This additional information is called event-specific data. If the event-specific data can be described by enumerating key-value pairs, we also speak of event-specific attributes. Event-specific data can be mandatory (i.e., every event of this event type provides it) or optional (i.e., events of that event type can provide this information but do not have to). Finally, log events always have an identifier for a part of the assessment (instrument identifier). In the context of log data collected with the CBA ItemBuilder the name of the CBA ItemBuilder project (i.e. the name of the project file) is often sufficient.

Original Items: If the original items are available, i.e., the ItemBuilder project files are available as they were used in a delivery platform (see chapter 7), the preview of the CBA ItemBuilder can be used to explore the triggered log events using the Tracing Debug Window described in the next section. Suppose the original project files can be used. In that case, it is automatically ensured that the so-called UserDefinedIds of the individual components used in the CBA ItemBuilder, which can be affected by user interactions, can be identified in the event-specific data of the log events. The UserDefinedIds are necessary for the interpretation of log events as soon as several components of one type within an ItemBuilder project have to be distinguished in order to assign the log events exactly (see section 3.7.4 for details).

Mock-Items: Unfortunately, for some instruments it is necessary to keep the task content secret. The stimulus and question texts, the concrete tasks, pictures, audio and video files, etc. must then be kept confidential. However, the confidential item contents are not necessary to explore the computer-based instrument concerning log events that are triggered by different user interactions. Mock-items are items in which the protected item contents have been replaced, keeping the structure and especially the UserDefinedIds unchanged (see section 8.7.2 for more details).

If for interpretation of log data the original items or carefully created mock-items for an instrument are available in form of CBA ItemBuilder project files, the log events can be explored with the Tracing Debug Window.

Since the CBA ItemBuilder versions can differ concerning the collected log data, it is suggested to use the identical CBA ItemBuilder version if this feature is used to make sense of log data from existing data collections (see section 1.3).

1.6.2 Trace Debug Window

Like the Scoring Debug Window, the Tracing Debug Window is a functionality provided by the CBA ItemBuilder during the preview of tasks. To use this feature, an original item or mock item must first be opened with the CBA ItemBuilder in the appropriate version. Afterward, as described in section 1.4, the preview must be requested. As soon as a task is previewed, a key combination (default is Strg / Ctrl + Y, see appendix 10.4 for details) requests the Tracing Debug Window.

Figure 1.13 shows a screenshot of the Tracing Debug Window for the example item shown in Figure 1.14.

[image: CBA ItemBuilder *Tracing Debug Window*.]

FIGURE 1.13: CBA ItemBuilder Tracing Debug Window.

Select the answer by clicking on one of the buttons. The Tracing Debug Window displays the past log events of the interaction with the currently displayed item:

	The first column contains a counter for the log events.

	The second column shows the timestamp.

	The third column is filled with the event type.

All following columns contain event-specific data, including the UserDefinedId. The Tracing Debug Window can be used to display the recent log events. After some time, the entries are deleted, i.e., only the most recent log events are displayed. Note that the input focus must be within the item before the keyboard shortcut is detected. The text click here in the example item (see, for instance, Figure 1.14) reminds you to set the input focus before pressing Cntrl + Y. While the Trace Debugger is open, no further log events are triggered respectively registered.

Examples: The CBA ItemBuilder project file shown in Figure 1.14 gives an insight into how the Tracing Debug Window works In this example simple buttons are used to implement a Single-Choice Item. The buttons are arranged in an identical way on different pages. With the help of the UserDefinedId of the buttons the selection behavior can be traced.

[image: *Button*-example for single-choice response format ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/QuickStartExploreLogging/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/QuickStartExploreLogging.zip)).]

FIGURE 1.14: Button-example for single-choice response format (html|ib).

Summary: The Tracing Debug Window of the CBA ItemBuilder’s preview can be used to display which log events a particular user interaction has within the computer-based assessment components. The complete list of implemented log events of the current version of the CBA ItemBuilder can be found in appendix 10.7. Additional log events can be added by the execution environment (see chapter 7). Log events are generated by default (i.e., no specific configuration is required to enable logging, see section 2.8).

1.7 Quick Start: Revise Item Content

This quick start section is intended for use cases where there are already existing CBA ItemBuilder projects that require only minor adjustments or changes. If you want to create new items, jump to the quick start section 3.3).

A primary motivation for developing an authoring tool for computer-based assessments was that item content should be easy to create and adopt without programming knowledge. Content experts should use the CBA ItemBuilder to develop assessment components and modify, adapt, and improve existing content. The subsequent section deals with this use case. In the following, it is assumed that assessment components (i.e., tasks or items) already exist in the form of CBA ItemBuilder Project Files, which are to be adapted, revised, or changed.

There may be several reasons why existing assessments might be adapted and modified. The ability to make minor changes is an essential part of Open Assessments. Potential reasons why existing instruments (i.e., assessment components in the form of instructional pages, tasks, and questions) should be adapted, could include:

	An instrument computerized using the CBA ItemBuilder is not available in the required language and should be translated by a content expert into a new language.

	An instrument was translated by an expert, and the translation was verified. However, since different languages require a different amount of space, so-called layout adaptions might be required for the assessment components created with the CBA ItemBuilder.11

	Computer-based instruments include additional components besides the actual test created by tasks and questions that embed and frame the assessment into a particular context. However, wording that was appropriately and accurately chosen for a particular occasion may be disruptive, obstructive, or misleading for further application of a test or instrument. This may relate only to how the target persons are addressed, to the wording in the consent form for participation, or other parts of the text used within assessment components.

	Within items, tasks or questions, individual phrases may need explanation for a particular target audience or may need to be replaced with other phrases that are more familiar or common to target audiences.

	Finally, perhaps some questions or tasks should be excluded or changed. As far as the changes require adjustments within Project Files, these can be implemented with the CBA ItemBuilder. Changes that affect the composition of assessments from multiple CBA ItemBuilder Project Files must then be configured in the test delivery software (see chapter 7).

Test and questionnaire development of psychometric instruments requires a scientific approach and in-depth understanding of the construct itself and the process of item development, test theory, and validation that goes far beyond the technical implementation in an assessment software. When items of computer-based tests are developed and scaled in terms of calibration, changes to item content and significant changes to response formats and item presentation may need to investigate and, in case, re-scale the modified items (see section 8.7.4 for a detailed discussion).

Modifications to psychometrically developed tests and questionnaires can invalidate the instruments or at least require empirical studies to investigate psychometric properties of modified instruments.

Hence, the following section can only describe from a purely technical perspective how CBA ItemBuilder Project Files at hand can be used as a starting point for sensitive changes to existing assessment components. CBA ItemBuilder Project Files could be available, for instance, because they were provided by a research data center or shared by other scientists.

1.7.1 Basic Terminology

In order to modify and adapt assessment components created with CBA ItemBuilder, a rough understanding of the structure of CBA ItemBuilder Project Files is required first. Project Files can be thought of as a workspace that contains all content that can be edited with the CBA ItemBuilder. This content is divided into the following units:

	Pages: Content is placed on pages and one or more pages are displayed simultaneously. In the Project View (see section 3.1 for a full description of the user interface) all pages are listed. If you right-click a page and select the entry Preview Page, you can view each page in isolation in the browser as it will then look during the runtime of the assessment. The pages have names assigned by the item author. Do not rename pages, because they are used as references for links and in the possibly configured dynamic parts. If all the contents of a Project File are to be translated, all pages must be edited. If only one part is to be adjusted or changed, the appropriate page must first be found. Pages can be previewed, or opened by double-clicking in the Page Editor.

	Components: The Page Editor shows a design view for editing pages. Pages are designed by placing components in the Drawing Area of the Page Editor. The design view is not 100% the same as how a page will look at runtime, but it reflects which component is placed at which position. Components are hierarchically nested on pages and can only be inserted in certain orders.

In the Page Editor elements can be selected but also moved by drag and drop. Be careful and undo unwanted changes by using the Undo function (see section 3.7).

Two views of the CBA ItemBuilder are central for editing components:

	Component View: Without going into detail about the design of pages using components (see section 3.7), the so-called Component Edit provides direct access to all components of a page. The Component Edit is the tab next to the Project View. It is possible to navigate within the tree view of the Component Edit to see nested components. To modify the properties of existing components, the context menu of components that opens after right-click on components in the Component Edit can be used.

	Property View: In order to be able to change the visible parts of components, it is first necessary to identify what type of component it is. The type of a component is displayed directly in the Component Edit in square brackets. To view and change further details about the components, the entry Show Properties View can be selected from the context menu of the component in the Component Edit. This opens the Properties view in the right area of the CBA ItemBuilder. The Properties view allows to edit properties of the component that is currently selected in the Drawing Area of the Page Editor or in the Component Edit. Most properties, with the exception of editing formatted text, can be changed directly in the Properties view.

Adaptations may also be necessary for images, audio, or video files that are used to design pages of assessment components in Project Files:

	Resource Browser: Images, videos and audio files are not created with the CBA ItemBuilder. Instead, media files are embedded into the Project Files and components link to the required resources. All resources included in a Project File can be viewed (and exchanged) via the Resource Browser, which can be opened via the menu Project and the entry Resource Browser.

With the help of the above-mentioned features of the CBA ItemBuilder, items can be customized and, for example, translated, as described in the next section.

1.7.2 Change Content in Existing Project-Files

To make changes to an assessment component created with the CBA ItemBuilder, the Project File must be opened. The CBA ItemBuilder requires additional configuration to allow opening two parallel programs on one computer (see section 6.8.8). As described in detail in the chapter 3, content can be edited using the Page Editor and assessment components created using the CBA ItemBuilder can be modified. For some selected purposes, the specific dialogs are available.

The CBA ItemBuilder provides the Edit all text fields function (in the Project menu), which can be used to make text changes and translations easily.

Change Texts using the Edit Text Occurrence-Dialog: For changing text, the CBA ItemBuilder provides a function that displays all components with text. The text can be changed immediately by double-clicking, without the need to open single pages. To use this function a Project File must only be opened. Then the option Edit all text field can be accessed via the menu Project. In the dialogue opening thereby (see illustration 1.15) all components are indicated, which have a text property.

[image: CBA ItemBuilder `Edit Text Occurrence` Dialog.]

FIGURE 1.15: CBA ItemBuilder Edit Text Occurrence Dialog.

The page on which a component with a particular text is placed is shown in the first column of the dialog shown in Figure 1.15. A preview of the text is shown in the second column, followed by the UserDefinedId (i.e., the user-defined internal identifier of the component). The columns Type, Component and Attribute inform about the types of the component the text belongs to. Do not translate texts that you don’t expect to be shown in the assessment to test-takers (such as texts used as variable names for components of type MapBasedVariableDisplay).

[Issue 39]

Texts that were included via images when designing assessment components with the CBA ItemBuilder must be replaced by replacing the images.

Depending on the design of the items by the item authors, it may be necessary to modify components manually, as described in the following. In general, the way how to change properties and the content of component depends on the type of component. The type of each component can be identified when the component is displayed in the Component Edit.

Change Text in Property View: For all components that only show text in one particular font size and font family (e.g., TextField, Button, Link, RadioButton, CheckBox, …), the text can be changed by changing the value of this property in the Properties view. For components that allow text to be formatted differently (formatted text), the CBA ItemBuilder provides internal editors (see the next subsection). To change simple text using the Properties view, the page must first be double-clicked for editing in the Project View. Then you can switch to the Component Edit (the next tab right to the Project View). Expanding the tree in the Component View is possible using the small arrows left to the text naming the [component type]. With the help of the right mouse button and the entry Show Properties View the Properties view can be shown. The Properties view always shows the properties of the component selected in the Component View / Page Editor. The Properties view is a powerful tool within the CBA ItemBuilder, allowing for instance, to adjust the displayed text of many components changing the value in the section Text of the Properties view.

If more space is needed by changing the text, the size of each component can be adjusted using the ‘Width’ and ‘Height’ properties. You may also need to adjust the position via the X and Y properties.

The font and font size used to display components with a text property can be adjusted in the Appearance section of the Properties view.

Change Formatted Text: Components of type TextField, HTMLTextField and ImageTextField do not use the Text Property. Instead, the text for these components can each be edited with a separate text editor, which also provides functions for formatting text sections. To open this editor these components can be double clicked in the Page Editor. TextFields and ImageTextFields also provide the entry Edit Rich Text in the context menu of the Component Edit. After an editor is opened for editing, the text can be changed. The changes are applied when the editor is closed via the Save and Close button.

Change Images, Videos and Audios: Components that show images or play videos or audio files refer to the media files embedded in the Project Files. The references are shown in the Properties view. To change or adjust media files, the reference can remain unchanged if the file name and file extension remains identical. It is sufficient to update the media files themselves (see section 3.10.1). Note that in case of images and videos the updated files require to have the identical size. Images are used with many different components for designing CBA ItemBuilder Pages, for instance, as background in containers of the type Panel (see section 3.10 for details).

If text is included in many images (instead of having images in the background and transparent components to show text on top within the CBA ItemBuilder, see section 3.7.5), we suggest the following: First export all images from a CBA ItemBuilder Project File that contain any text. This can be done manually by clicking on each image in the Resource Preview of the Resource Browser and exporting it via Save Image (or similar). Alternatively, the CBA ItemBuilder Project File can also be opened using a program for ZIP archives to copy the image files from the sub-directory resources (see section 8.3.3 for details).

Translated or modified image files, audio files or videos can be easily replaced by Add in the Resource Browser. To do this, close all open pages beforehand (so that no Page Editor is visible anymore).

Change Text Mapped to Numbers: The CBA ItemBuilder also supports the display of dynamic content with various components. For this purpose, so-called Value Maps (see section 4.2.4) are used to assign texts, images or videos to numerical values (Guards). The images used there can be exchanged with the help of the Resource Browser, as described. Texts, however, must be edited in the Value Map Details. For this purpose, the entry Browse Value Maps can be opened via the menu Project. If a Value Map contains text, then this can be edited after selection of the Value Map in the Value Map Details with the help of the Edit button.

A step-by-step approach is recommended for the modification of assessment components. Check adjustments with the help of Preview before making further changes.

The CBA ItemBuilder automatically checks the consistency of the configuration when a large number of changes are made and displays an error message if necessary. A collection of error messages and possible solutions can be found in section 6.8.4.

1.8 CBA ItemBuilder for Software-Developers

This section is not intended for item authors who want to use the CBA ItemBuilder to computerize assessment content but for software developers that were asked to support a particular assessment project that considers using the CBA ItemBuilder.

The CBA ItemBuilder supports mainly two use cases that require software developers.

The CBA ItemBuilder is not only freely available for non-commercial use (see section 1.2). It can also be integrated into existing contexts and allows the integration of existing HTML/JavaScript implementations of assessment content- In this sense, the CBA ItemBuilder is an open tool for developing computer-based assessments.

Embedded Content into CBA ItemBuilder Tasks: Content can be embedded into CBA ItemBuilder items using iframes (used within CBA ItemBuilder designed Pages with components called ExternalPageFrames, see section 3.14). A simple interface allows the embedded HTML5/JavaScript to interact with the CBA ItemBuilder task, to store data, and to re-store its state on re-visit is available.

Software developers can find all required information in section 4.6.

HTML5/JavaScript programmers can add missing features to CBA ItemBuilder items by implementing content that is embedded as iframes, and that can interact with the content created by item authors using a simple API based on Post Messages.

Open source repositories with content generated for ExternalPageFrames are welcome.12

Embedding CBA ItemBuilder Tasks into other Applications: Items created with the CBA ItemBuilder can also be embedded into other web-based delivery software. For this use case the so-called TaskPlayer API is provided.

Software developers can find all required information in section 7.7.

Developers can integrate the content generated with the CBA ItemBuilder by including the provided runtime (called TaskPlayer API) into web applications, that allow loading and displaying of CBA ItemBuilder Tasks. No special server technology is required.

Open Source Contribution to the CBA ItemBuilder: Currently, open-source contributions to the CBA ItemBuilder’s source code (i.e., the desktop application) and the React runtime cannot be managed and considered for integration by DIPF/TBA.

	Synonyms are computer-based testing (CBT), technology-based assessment (TBA) or technology-based testing (TBT).↩︎

	The Page Editor is not yet WYSIWYG (i.e., “What you see is what you get”), but gives a rough visual impression of the page content, and the internal Renderer-view (see section @ref(#ui-project-view-component-edit-embedded-html-explorer)) and the (external) Preview show the final layout (see section 1.4.2).↩︎

	For further information about the different versions of the CBA ItemBuilder, see appendix 10.5. Note that some of the screenshots might show older versions of the CBA ItemBuilder.↩︎

	For a user with the user name USER_NAME the CBA ItemBuilder of a particular CBA_IB_VERSION is installed here: C:\Users\USER_NAME\AppData\Local\CBA_IB_VERSION\IB\cba-itembuilder.exe. Note that for previous versions of the CBA ItemBuilder it was suggested to avoid white spaces in path names and to keep path names as short as possible.↩︎

	How to find out which version an item was created with is described in the subsection 8.3.3.↩︎

	Note: An error message is displayed, when a second instance of the CBA Item Builder is started. In this case the second instance of the CBA Item Builder terminates. If configured properly, new CBA ItemBuilder versions (starting with version 9.4) can be used in parallel, see section 6.8.8 for details.↩︎

	Migrations might require changes and corrections if the functionality of CBA ItemBuilder changed (see section 3.2.1).↩︎

	Note that a project file has a file name and an internal project name (see section 3.2.1.) ↩︎

	If the task uses a so-called X-page layout, the first two pages that appear on screen are defined in the task definition (see section 3.6.2).↩︎

	No Scoring Debug Window is pesent for the preview of single Pages.↩︎

	Note that in previous projects that used the CBA ItemBuilder in multilingual assessments, an automated translation process was used using the XLIFF format (see section 6.9). The current version version 10.0.0 might not fully support XLIFF. please contact the support, see section 1.2).↩︎

	See, for instance, msk-oc-externalpageframes.↩︎

2 Principles of Computer-Based Assessment

Computer-based assessment (CBA) is based on principles and ideas of psychometric measurement and diagnostics Lane, Raymond, and Haladyna (2015), developed in various disciplines, such as psychology, social sciences, and educational research, over many years. Since data collection was done for a long time using paper-based tests and questionnaires, previous research still influences how CBA is designed. However, from the beginning of CBA research, it was anticipated that the change in the technology used for testing, although started with the transfer of existing paper and pencil tests, would also impact the instrument development and the theory of test responses (e.g., Dann, Irvine, and Collis 1991).

Educational Large-Scale Assessments: Beyond the traditions developed for paper and pencil instruments, in particular the implementation of current educational assessments are also influenced by the testing industry (e.g., Bridgeman 2009) and international large-scale assessment (ILSA) programs such as PIAAC (Programme for the International Assessment of Adult Competencies, e.g., Kirsch and Lennon 2017), PISA (Programme for International Student Assessment, e.g., Naumann and Sälzer 2017), TIMSS (Trends in International Mathematics and Science Study, e.g., Fishbein et al. 2018), ICILS (International Computer and Information Literacy Study, e.g., Ihme et al. 2017). These ILSA’s, as well as many national assessment programs such as, for instance, NAEP (National Assessment of Educational Progress, e.g., Bennett et al. 2008) in the U.S. and NEPS (National Educational Panel Study, e.g., Kroehne and Martens 2011) in Germany, have changed from paper-based to computer-based assessment in the past year(s).

Assessment of and for Learning: CBA can be used for summative and formative assessment (e.g., Tomasik, Berger, and Moser 2018) and, when combined with feedback (see section 2.9), is also helpful for self-assessments. It thus goes beyond assessments of learning and can also be used in assessments for learning (Wiliam 2011).

Testing on the Internet: Computer-based assessment, of course, does not only occur within large-scale educational assessments. Instead, cognitive and non-cognitive instruments in various disciplines of the social and behavioral sciences are administered computer-based, online via the internet, or with the help of mobile devices in research and application. While from a technical perspective, different frameworks for creating (native) user interfaces exist for the various platforms, HTML5/JavaScript has emerged as a universally available concept. So, although there are also specific requirements for each of the different delivery formats (see chapter 7) in the context of assessments, a considerable overlap can be observed for the presentation of assessment content in HTML5/JavaScript, in the tradition of what was called psychological testing and assessment on the Internet (e.g., Naglieri et al. 2004).

In the following, advantages of computer-based assessments in comparison to paper-based testing (section 2.1) are described, followed by typical challenges, in particular, with respect to the comparability of assessments using classical response formats (section 2.2). This will be followed by a section on innovative item types (section 2.3), meaning item types there are only available for computer-based assessments. Different forms of item presentation and navigation between items are presented in section 2.4).

How to do this with the CBA ItemBuilder? In this chapter, small sections under the heading ‘How to do this with the CBA ItemBuilder?’ refer to other text parts in the following chapters that help to relate the theoretical concepts to practical applications.

2.1 Advantages & Benefits of CBA

Using CBA for the measurement of individual differences or group differences in various personal characteristics such as skills, competencies, personality dimensions, motivation, or attitudes is often motivated by potential benefits that will be briefly mentioned in this section (see, for instance, Haigh 2010).

Standardization: Among the apparent advantages of CBA is that the comparability of assessments can be increased through an increased degree of standardization (e.g., Jurecka 2008). In a computer-based assessment, the item authors can design diagnostic situations, defining which information is visible and accessible at which point (navigation restriction) and how test-takers can interact with the content to answer questions or construct responses. Carefully designed items allow standardizing, for instance, in which sequences tasks can be answered or if questions linked to an audio stimulus are accessible before the audio stimulus was played (navigation restriction). Item authors can also improve the common understanding of response formats by providing animated and interactive tutorial tasks (instructions). Audio and video components might also be used to reduce the reading load of items for all test-takers or as test-accommodation provided for selected test-takers only. Even simple answer formats can be designed in the computer-based assessment in such a way that invalid responses are impossible and test-takers are informed about possible handling errors, e.g. the selection of several answers in a single-choice task.

How to do this with the CBA ItemBuilder? Details about the use of audio and video elements can be found in section 3.10.3. More about animated instructions can be found in section 6.4.1 and an example illustrating the idea of navigation restrictions can be found in section 6.4.6.

Scoring: Various additional advantages are achieved by the possibility of instant scoring of closed response formats and selected text responses. (e.g., number inputs or text inputs that can be scored using simple rules like regular expressions and open text responses that can be scored using advanced NLP techniques). Automatically scored information derived from already administered items can be used for various purposes, either during the assessment or to simplify the post-processing of assessment data.

How to do this with the CBA ItemBuilder? Key for using the results of answered items directly is the so-called scoring definition, that can be defined for CBA ItemBuidler items within the tasks (see chapter 5).

Instant Feedback: During a computer-based assessment, instant feedback is possible on the results, processes and time (see section 2.9.1), the presentation of prompts, and a combination of tasks as scaffolding can improve data quality or implement formative assessment and assessment for learning (i.e., formative assessment). Immediately following the completion of an assessment, result reports can be generated and made available. Feedback can also refer to missing values in the assessment, for instance to reduce accidental overlooking of individual subtasks.

How to do this with the CBA ItemBuilder? Instant feedback and sequences of questions within tasks can be implemented using the conditional link feature (see section 4.3) or with the help of the so-called Finite-State Machine (see section 4.4). Feedback across tasks can be provided as part of the deployment software (see section 7.3.5 for an example).

Adaptivity & Measurement Efficiency: If scoring is already available for at least some of the items or questions during the test administration, various forms of adaptivity can be realized. The spectrum of possibilities ranges from hiding particular non-relevant items, simple skip rules, and filters to psychometric approaches such as multi-stage testing and one- or multidimensional adaptive testing as strategies of Automated Test Assembly that can result in an increased Measurement Efficiency (see section 2.7).

How to do this with the CBA ItemBuilder? Adaptivity within instruments can be implemented directly in the CBA ItemBuilder (see section 6.7 for an example), strategies of Automated Test Assembly requrire the use of specific deployment software (see section 7.2.7).

Innovative Items / Technology-Enhanced Items (TEI): Computer-based assessment promises to provide benefits for validity and construct representation of assessments using innovative item formats (e.g., Sireci and Zenisky 2015; Wools, Molenaar, and Hopster-den Otter 2019) and technology-enhanced items (TEI, e.g, Bryant 2017), using capabilities provided by the digital environments used for assessment (e.g., Parshall 2002). Item formats that were not possible in paper-based assessment include drag-and-drop response formats, digital hypertext environments (Hahnel et al. 2022), performance-based assessment in simulated environments and authentic assessment (e.g., B. B. Frey, Schmitt, and Allen 2012) to game-based assessments and stealth assessment (e.g., Shute et al. 2016).

How to do this with the CBA ItemBuilder? Starting from freely designable pages, items can be contextualized in the CBA ItemBuilder and enhanced with a variety of interactive components, including hypertexts (see section 3.13.2) and drag-and-drop (see section 4.2.6). A large number of innovative items can be implemented directly with the components provided by the CBA ItemBuilder. In addition, the CBA ItemBuilder allows the integration of external content, e.g. to enable interactive response formats that cannot yet be created with the components in the CBA ItemBuilder (see section 3.14). Furthermore, items designed with the CBA ItemBuilder can also be integrated into other web-based content (see section 7.7).

Log Data & Process Indicators: Computer-based assessment as a method also provides insight into test processing through behavioral data (Goldhammer and Zehner 2017), i.e., log data (gathered in the form of events) from which process indicators can be derived (Goldhammer et al. 2021). While log data can be collected using technical tools even with paper-based assessments (see, e.g., Dirk et al. 2017; Kroehne, Hahnel, and Goldhammer 2019), the availability and use of log-data from computer-based assessment has developed into a unique area of research (e.g., Zumbo and Hubley 2017).

How to do this with the CBA ItemBuilder? Items created with the CBA ItemBuilder by default collect log events (see section 1.6.2 for the live preview in the Trace Debugger), and custom log events can be added if required. The CBA ItemBuilder aims at replay-completeness (as defined in Kroehne and Goldhammer 2018) and the analysis of log data gathered with the CBA ItemBuilder is possible, for instance, with the LogFSM package (see section 2.8).

Response Times: A typical kind of information, which can also be understood as a specific type of process indicator, is the Response Time. Suppose the task design meets specific requirements (e.g., the one item one screen , OIOS, Reips 2010), response times can be easily identified and may already be part of the programming of computer-based assessments. Response times can be used for various purposes, including improving the precision of ability estimates (e.g., Time on Task as used in Reis Costa et al. 2021). However, even when multiple tasks are administered within a unit, time information is available. In that case, item-level response times can either be derived using methods for analyzing log data (Kroehne and Goldhammer 2018), or at least the total time for the entire unit or screen can be derived from computer-based assessments. A specific process indicator that can be derived using response times that allows the identification of disengaged test-taking and careless insufficient responding is Rapid Guessing and Rapid Responding (see section 2.5.3), a thread to validity, in particular, for low-stakes assessments. Response times allow monitoring test-taking engagement and can be used to investigate differences in test-taking motivation (e.g., Kroehne, Gnambs, and Goldhammer 2019).

How to do this with the CBA ItemBuilder? The CBA ItemBuilder runtime automatically provides the total time for each task and user-defined time measures can be computed during the assessment using an operator measuring the ellapsed time (see section 4.4) or extracted from the log data (see section 2.8).

Online & Mobile Deployment: The manifold possibilities of Internet-based assessment were recognized early on (e.g., Buchanan 2002; Bartram 2005). Since the early years, the possibilities to conduct online assessment under similar conditions have technically improved. For example, it is now possible to carry out assessments in full-screen mode and to register and record exits or interruptions in the log data, if not to prevent them. At the same time, however, the heterogeneity of Internet-enabled devices, tablets, and especially mobile phones has increased. Reliable and secure online and mobile assessments are therefore still a topic of current research and (further) developments.

How to do this with the CBA ItemBuilder? The CBA ItemBuilder runtime can be used to deliver tasks under a variety of online, mobile, and offline scenarios (see chapter 7 for more details on test delivery options).

CBA also results in changed costs for the assessments since the effort to create and test computer-based assessments can be higher (in particular for testing, see section 8.4), but the costs for the distribution of the computer-based administered instruments and the scoring of closed response formats, in particular, can be lower. However, most importantly content created for computer-based assessments can be shared and duplicated without additional costs. While these options obviously do not change the requirements for item protection and confidentiality (see section 2.10), especially concerning assessment content from large-scale assessments, they change how developed assessment instruments from research projects can be distributed and applied in practice (see section 8.7.4). All the potential benefits of CBA come with, for instance, practical challenges (e.g, Mills 2002; Parshall 2002), some of them will be discussed in section 6.

2.2 Standardized Response Formats

The existing standard Question and Test Interoperability (QTI)1 defines simple items with one point of interaction. These simple items can be understood as the standardized form of classical response formats (see Figure 2.1 for an illustration).

[image: Item illustrating *QTI* interactions for simple items ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/QTIEquivalentSimpleInteractionsExamples/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/QTIEquivalentSimpleInteractionsExamples.zip)).]

FIGURE 2.1: Item illustrating QTI interactions for simple items (html|ib).

Choice Interaction: The QTI Choice Interaction presents a collection of choices to a test-taker. The test-takers response is to select one or more of the choices, up to a maximum of max-choices. The choice interaction is always initialized with no choices selected. The behavior of QTI Choice Interactions regarding the number of selectable choices is described with the attributes max-choices and min-choices.

How to do this with the CBA ItemBuilder? Instead of max-choices and min-choices the CBA ItemBuilder differentiates between RadioButtons (single-choice, see section 3.9.2) and Checkboxes (multiple choice, see section 3.9.3), and the more general concept of FrameSelectGroups (see section 3.5.1).

The QTI standard only differentiates between orientation with the possible values horizontal and vertical, while the CBA ItemBuilder allows you to create any visual layout (including tables) with either RadioButtons and/or Checkboxes (see section 3.5.3).2 Moreover, QTI allows to define the option shuffle to randomize the order of choices.3

(Extended) Text Entry Interaction: The QTI Text Entry Interaction is defined as an inline interaction that obtains a simple piece of text from the test-taker. The delivery engine (i.e., assessment platform) must allow the test-taker to review their choice within the context of the surrounding text. An example illustrating an item from Striewe and Kramer (2018) is shown in Figure 2.1. QTI uses specific so-called class attributes to define the width of text entry component. QTI defines the Extended Text Interaction for tasks where an extended amount of text needs to be entered as the response.

How to do this with the CBA ItemBuilder? Text responses can be collected with input fields (either single line or multiple lines, see section 3.9.1)4, while size and position can be defined visually in the Page Editor (see section 3.7). Regular expressions can be used to restrict possible characters (see section 6.1.3).

Gap Match Interaction / Associate Interaction / Order Interaction: QTI defines various interactions, that can be realized using drag and droop, such as Gap Match Interaction, Associate Interaction, and Order Interaction (see Figure 2.1). The interactions are defined by QTI for text and graph, depending on the nature of the elements.

How to do this with the CBA ItemBuilder? A concept that allows drag and drop of text, images and videos is implemented in the CBA ItemBuilder (see section 4.2.6). Using this approach, the interactions described by QTI can be implemented by a) visually placing the source and target elements on a page and b) configuring the drag and drop to either switch, copy or move values.

Match Interaction: Another interaction that not necessarily needs to be realized using drag and drop is the Match Interaction, that can also be computerized using components of type Checkbox as used for multiple choice responses formats (see Figure 2.1).

HotText / Inline Choice Interaction: For choice interactions embedded in context (e.g. text, image, etc.), the QTI standard defines two different interactions. Two possible implementations, with buttons and ComboBoxes, are shown in Figure 2.1. However, the response formats can also be implemented with other components, for example, Checkboxes (multiple-choice) or RadioButtons (single-choice) for hot text interactions.

Slider Interaction: Response formats in which the possible answers cannot leave a predefined value range contribute to the standardization of assessments. QTI defines such a response format as Slider Interaction (see Figure 2.1).

How to do this with the CBA ItemBuilder? The CBA ItemBuilder has specific components that can be linked directly to variables (see section 4.2.2).

Additional Interactions Defined by QTI: The QTI standard defince additional interactions not illustrated in Figure 2.1. The Media interaction allows to add audio and video components to items, including a measurement how often the media object was experienced.

How to do this with the CBA ItemBuilder? The use of components to play audio and video files is described in section 3.10.3.

Hotspot interaction and Position Object interaction are graphical interactions that allow to select or positions parts of images, while the Drawing interactions describes items in which test-taker can construct graphical responses.

How to do this with the CBA ItemBuilder? Simple graphical interactions can be implemented using ImageMaps (see section 3.9.10). For more advanced graphical response formats, the CBA ItemBuilder provides the concept of ExternalPageFrames, to embedd HTML5/JavaScript content (see section 3.14 and section 6.6 for examples).

QTI also defines the Upload interactions, that is more suited for learning environments and not necessarily for standardized computer-based assessment since uploading material from the computer might violate typical requirements regarding test security (see section 2.10).

PCI Interaction: As shown in Figure 2.1, the CBA ItemBuilder can be used to create items that correspond to the interactions defined by QTI. Figure 2.1 shows a single CBA ItemBuilder task, illustrating two different ways of navigating between interactions. The Innovative Item Types described in section 2.3 below show additional examples beyond the possibilities defined in the QTI standard. To use such innovative items, e.g., tasks created with the CBA ItemBuilder, in QTI-based assessment platforms, QTI describes the Portable Custom Interaction (PCI).

How to do this with the CBA ItemBuilder? CBA ItemBuilder tasks can be packaged in a way that allows using them in QTI-based assessment platforms, such as TAO (see section 7.4).

Combination of Interactions: Not all of the interactions standardized by QTI were available in paper-based assessments (PBA) mode. However, in particular, single- and multiple-choice interactions (for closed question types) and text entry interactions (for constructed written responses) were used extensively in PBA, meaning printed and distributed across multiple pages.

How to do this with the CBA ItemBuilder? The CBA ItemBuilder uses the concept of pages on which components are placed to implement individual interactions to structure assessments into items, tasks and units (see section 3.4). This makes it possible to implement Choice Interactions and Text Entry Interactions, among others, in any order, without the QTI interactions themselves having to be provided by the CBA ItemBuilder (see Figure 2.1).

Beyond simple items, Items in general are defined by QTI as a set of interactions:5

For the purposes of QTI, an item is a set of interactions (possibly empty) collected together with any supporting material and an optional set of rules for converting the candidate’s response(s) into assessment outcomes.

Distribution of Items on Pages: The QTI standard also provides some guideline how to split content with multiple interactions into items:6

To help determine whether or not a piece of assessment content that comprises multiple interactions should be represented as a single assessmentItem (known as a composite item in QTI) the strength of the relationship between the interactions should be examined. If they can stand alone then they may best be implemented as separate items, perhaps sharing a piece of stimulus material like a picture or a passage of text included as an object. If several interactions are closely related then they may belong in a composite item, but always consider the question of how easy it is for the candidate to keep track of the state of the item when it contains multiple related interactions. If the question requires the user to scroll a window on their computer screen just to see all the interactions then the item may be better re-written as several smaller related items.

How to do this with the CBA ItemBuilder? The CBA ItemBuilder provides a high degree of design freedom. Items do not have to be broken down into individual interactions. Components to capture responses can be freely placed on pages, and item authors can define how test-takers can switch between pages. However, the division of assessment content into individual components (referred to as Tasks in the context of the CBA ItemBuilder) is still necessary (see in detail in section 3.6).

Two key points for the computerization of assessments can be derived from the QTI standard:

	The QTI standard defines basic interaction types. However, the combination of multiple items requires either scrolling (if all items are computerized using one page) or paging (i.e., additional interactive elements are required to allow the navigation between items, see section 2.4). The button button View as single page with scrolling ... in Figure 2.1 illustrates the two possibilities.

How to do this with the CBA ItemBuilder? As shown in Figure 2.1, the CBA ItemBuilder technically supports paging and scrolling. However, paging is preferred as it allows item designs in which only one task is visible at a time. Moreover, the structure created by item content, such as Units, is important to consider when distributing items across pages and deciding on the required navigation.

	The standardization of computerized items goes beyond the definition of individual interactions. For instance, typical QTI items provide a submit button at the end of the page that contains one or multiple interactions (and the submit button is essential to acknowledge, for instance, regarding the precise definition of response times, see section 2.2.2).7

How to do this with the CBA ItemBuilder? Assessment components created with the CBA ItemBuilder cannot be described with the QTI standard. However, the project files can be shared and archived, either with the actual task content or only as functional mockups with replaced content (referred to as Mock Item).

2.2.1 Mode Effects and Test-Equivalence

Items designed for collecting diagnostic information were printed on paper, and simple response formats such as choice interactions and text entry interactions were used that capture the products of test-takers answering items in paper-based assessments. As described in the 2.1 section, there are a number of advantages of computer-based assessment that distinguish this form of measurement from paper-based assessment. Until these advantages are exploited to a large extent and to confirm that existing knowledge about constructs and items holds, research into the comparability of paper- and computer-based assessment is essential (e.g., Bugbee 1996; Clariana and Wallace 2002).

Properties of Test Administration: As described by Kroehne and Martens (2011), different sources of potential mode effects can be distinguished, and a detailed description of properties of test administrations is required, since also different computerization are not necessarily identical. Hence, instead of the comparison between new (CBA) versus old (PBA), the investigation of different properties that are combined in any concrete assessments is required, for instance, to achieve reproducibility.

Item Difficulty and Construct Equivalence: A typical finding for mode effects in large-scale educational assessments is that items become more difficult when answered on a computer (e.g., for PISA, A. Robitzsch et al. 2020). From a conceptual point of view, a separation between the concept of mode effects and Differential Item Functioning (Feskens, Fox, and Zwitser 2019) might be possible, since properties of the test administration can be created by researchers and conditions with different properties can be randomly assigned to test-takers. Consequently, mode effects can be analyzed using random equivalent groups and assessments can be made comparable, even if all items change with respect to their item parameter (Buerger et al. 2019). When advantages available only in computer-based assessment are utilized, the issue of mode effects fades into the background in favor of the issue of construct equivalence (e.g., Buerger, Kroehne, and Goldhammer 2016; Kroehne et al. 2019).

Mode effects might affect not only the response correctness, but also the speed in which test-taker read texts or, more generally, work in computer-based tests (Kroehne, Hahnel, and Goldhammer 2019), and mode effects can also affect rapid guessing (e.g., Kroehne, Deribo, and Goldhammer 2020), and might occur more subtly, for instance, concerning short text responses due to the difference in writing vs. typing (Zehner et al. 2018).

Further research and a systematic review regarding mode effects should cover typing vs. writing (for instance, with respect to capitalization, text production, etc., Jung et al. 2019), different text input methods such as hardware keyboard vs. touch keyboard, different pointing devices such as mouse vs. touch, and scrolling vs. paging (e.g., Haverkamp et al. 2022).

2.2.2 Response Times and Time on Task

Various terms are used in the literature to describe how fast responses are provided to questions, tasks, or items. Dating back to Galton and Spearman (see references in Kyllonen and Zu 2016). Reaction Time measures have a long research tradition in the context of cognitive ability measurement. Prior to the computer-based assessments, response times were either self-reported time measures or time measures taken by proctors or test administrators (e.g., Ebel 1953).

In recent years and in the context of computer-based assessment, Response Time is used to refer to time measures that can be understood as the time difference between the answer selection or answer submission and the onset of the item presentation (see Figure 2.2). However, a clear definition of how response times were operationalized in the computer-based assessments is missing in many publications (e.g., Schnipke and Scrams 1997; Hornke 2005). If log data are used to measure the time, the term Time on Task is used (see, for instance, Goldhammer et al. 2014; Naumann and Goldhammer 2017; Reis Costa et al. 2021).

[image: Example illustrating different operationalizations of *Response Time* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ElapsedTimeOperatorExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ElapsedTimeOperatorExample.zip)).]

FIGURE 2.2: Example illustrating different operationalizations of Response Time (html|ib).

Extreme Response Times and Idle Times: Response times have a natural lower limit. Short response times faster than expected for serious test-taking can be flagged using time thresholds if necessary (see section 2.5.3). Very long response times occur, for instance, if the test-taking process is (temporarily) interrupted or if the test-taking process takes place outside the assessment platform (in terms of thinking or note-taking on scratch paper). In particular, for unsupervised online test delivery (see section 7.2.1), long response times can also be caused by test-takers exiting the browser window or parallel interactions outside the test system. In order to gather information to allow informed trimming of long response times, it may be useful to record all interactions of test-takers that imply activity (such as mouse movements, keyboard strokes). Log events can then be used to detect idle times that occur when, for whatever reason, the test-taking is interrupted (see section 2.8).

Response Times in Questionnaires: As described in Kroehne et al. (2019) without a precise definition, response times cannot be compared, and alternative operationalizations, for instance, the time difference between subsequent answer changes are possible. In survey research the term Response Latency is used (e.g., Mayerl 2013), both for time measures taking by interviewers or by the assessment software. However, as described by Reips (2010), the interpretation of time measures require to know which task, question or item a test-taker or responded is working on, and additional assumptions are required if test-taker can freely navigate between tasks or see multiple questions per screen. With additional assumptions, item-level response times can, however, be extracted from log data, as illustrated for the example of item-batteries with multiple questions per screen in Figure 2.3.

[image: Item illustrating *Average Answering Time* for item batteries ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/KroehneGoldhammer2018AATDemo/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/KroehneGoldhammer2018AATDemo.zip)).]

FIGURE 2.3: Item illustrating Average Answering Time for item batteries (html|ib).

Time Components from Log Data: Since there are now countless different computer-based tests, many software tools, and assessment implementations, the concept of response times requires a more precise operationalization. One possible definition of time measures uses log events, as suggested as Time on Task. Various response time measures can be extracted from log data using methods developed for log file analyses (see section 2.8). Depending on the item design, all response time measures may require assumptions for interpretation. For example, if items can be visited multiple times, the times must be cumulated over visits. However, this rests on the assumption that the test-taker thinks about answering the task each time a task is visited. If multiple items are presented per screen and questions can be answered in any sequence, an assumption is necessary that each time a test-taker thinks about a question, this will be followed by an answer change.

2.2.3 Time Limits (Restrict Maximum Time)

Traditionally, in paper-based large scale assessments, time limits for tests or booklets were mainly used. Restricting the time for a particular test or booklet has the practical advantage that this type of time limit can also be controlled and implemented in group-based test administrations. A similar procedure can also be implemented in computer-based assessment. A time limit is defined for the processing of several items (e.g., for the complete test or a sub-test or section), and after the time limit has expired, the tasks for a particular test part can no longer be answered.

In contrast, however, computer-based testing also allows the implementation of time limits for individual tasks or small groups of items (e.g., units). The advantage is obvious: While time limits at the test level or booklet level can result various reasons to large inter-individual differences in the number of visited items (for instance, due to individual test-taking strategies or individual items that a test person is stuck on), time limits at item level can be implemented in such a way that all persons can see each item for at least a certain amount of time. Computer-based assessment allows to differentiate between time limits at the item level and time limits at test level. In between, time limits for item bundles, e.g., units, can be created. If the comparability of psychometric properties of an assessment to an earlier paper-based form is not necessary of if this comparability can be established, for example, on the basis of a linking study, then time limits can be used purposefully in the computer-based assessment to design the data collection. For example, if a test is administered in only one predetermined order (i.e, no booklet design), time limits at the test level will result in not-reached items depending on the item position.

How to do this with the CBA ItemBuilder? Time limits for tasks (i.e., single items or group of items) can be implemented with the CBA ItemBuilder, for example (see section 6.4.5). Time limits across multiple items can be defined at the level of the test delivery (see section 7.2.8).

Time limits do not only restrict test-taking. Time limits also give the test-takers feedback on their individual chosen pace of working on the task (e.g., Goldhammer 2015). Different possibilities to give feedback during the assessment are described in section 2.9.1). The item design of Blocked Item Response (see section 2.4.1 can be used to force a minimum time for individual items.

2.3 Innovative Item Types / Technology-Enhanced Items (TEI)

New item formats for computer-based assessment are called Innovative Item Formats (e.g., Sireci and Zenisky 2015; Wools, Molenaar, and Hopster-den Otter 2019) or Technology-Enhanced Items (TEI, e.g, Bryant 2017), and early attempts defined innovative item formats as items using capabilities not available in paper-based assessment (e.g., Parshall 2002). Innovations through computer-based assessment were also described along the dimensions of Complexity (A=less complex to D=more complex) and Constraintness (1=fully selected to 7=fully constructed) (see Figure 2.4 and Figure 1 in Scalise and Gifford 2006).

[image: Item illustrating different item formats described in [@ScaliseComputerbasedassessmentElearning2006, [html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/Scalise2006aExampleItems/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/Scalise2006aExampleItems.zip)].]

FIGURE 2.4: Item illustrating different item formats described in (Scalise and Gifford 2006, html|ib).

Since the early attempts to define innovative item formats, research practice has produced many forms of simulation-based, authentic, and interactive assessments in recent years. Examples created with the CBA ItemBuilder include:

	Assessment of ICT literacy with simulations (see, for instance, Fig. 6.2 in Goldhammer and Kroehne 2020)

	Evaluation of online information Hahnel, Jung, and Goldhammer (2023)

	Complex problem solving (see, for instance, Fig 1 in Tóth et al. 2014)

	Technical problem solving (see, for instance, Fig 1 in Stemmann 2016)

	Highlighting as response format (e.g., for PIAAC, Schnitzler et al. 2013; and for the National Educational Panel Study, NEPS, Heyne et al. 2020)

	Multiple Document Literacy (e.g., Fig 1 in Hahnel et al. 2019)

	… (to be continued) …

2.4 Item Presentation and Navigation

The term Navigation (or interface navigation) within assessments refers to the provided possibilities for test-takers to switch back and forth between items. Software tools and assessment platforms provide different interfaces for navigating between Tasks, and as the ICT/ATP Guidelines for Technology-Based Assessment suggest,8 test-takers should be informed about navigating between tasks and have opportunities to practice navigation before the assessments.

Screen Layout: In order to be able to describe the options for navigation within assessments, one must first be aware of how the instructions and items in a computer-based assessment are presented on screen. Either only one item is displayed in full screen (Full Page Items, see section 2.4.1), or one or more additional visual components, for instance, for navigation, progress display, etc., are presented together with the item (Integrated Item Presentation, see section 2.4.6) on screen.

Combining multiple text entries, for instance, in C-tests (see section 2.4.3) or more general as so-called Cloze tests or in an Embedded Answers response format results in screen layout with multiple interactions per page. Text entry response formats (and other response formats as well) typically define one focused element, resulting in a Within-Item Navigation. Combining multiple items, for example, items with a common stimulus can also result in dependencies between assessment items. For this reason, it may be helpful to further distinguish between navigation within related items (referred to as Units, see Within-Unit Navigation in section 2.4.4) and navigation between items (see Between-Unit / Test-Level Navigation in section 2.4.5). Finally, for operational reasons, some assessment components have a unique role. Examples of this are so-called stop items, which are used in group tests to synchronize test processing in terms of time (see section 2.4.2).

Presentation Size: The planned screen layout determines how much space the assessment content can occupy (i.e., the required Size of items on screen). Screen size is usually specified in pixels. In addition, the Resolution (also measured in Pixels) must be distinguished from the actual size of the display, which depends on the physical size of the screens (usually specified in Inches of the diagonal). Finally, for the translation from Pixels (resolution) to Inches (display size), the pixel density as the amount of pixels per inch (often specified as dpi, i.e., dots per inch) and potential zoom factors must be taken into account. Zoom factors can be device-specific (i.e., a magnification implemented, for instance, by the operating system) or in browser-based deliveries also implemented by the web browser.

How to do this with the CBA ItemBuilder? A property CBA Presentation Size is defined for each assessment component created with the CBA ItemBuilder. As discussed in section 3.2.2, the CBA Presentation Size defines the aspect ratio of item material as presented on screen, while the test deployment software (see chapter 7 can propritionally scale the content to fit on screen).

Aspect Ratio and Screen Orientation: The ratio of the width to the height of a screen is called the aspect ratio, resulting in terms like 4:3 (e.g., screens with a resolution of 1024x768 pixels), 16:9 (e.g., screens with a resolution of 1920x1080 pixels), etc., which are also used to characterize screens. Finally, the aspect ratio also determines the orientation of screens. If the width is larger than the height, one speaks of Landscape Format, if the height is larger than the width of Portrait Mode.

Windows Size and Browser Size: For web-based delivered assessments or other forms of delivery that are not standardized using a kiosk solution, the window size or the size of the browser must also be considered. In the worst case, this can cause the user to change the display size during test processing. On some operating systems, even for web-based deliveries, the browser full-screen mode can at least prevent the window size from changing.

Proportional Scaling: When assessments are not run on uniform hardware, determining the exact Item Size is often tricky in practice. It is even often impossible, especially if the item contents are only displayed embedded (see section 2.4.6) or if the available display area may even change due to the window size. This is countered by the demand to design as precisely as possible what the test-takers see in the context of a standardized assessment at a given time and how they can interact with the item material. One possible solution to this challenge is to implement Proportional Scaling of item content. This uses the available space on the screen while maintaining the aspect ratio until either height or width is exhausted.

Scrolling: An obvious way to display more content on a screen than the screen size allows is to use scrollbars. In fact, in HTML-based implementations of computer-based assessments, these often appear automatically. Vertical scrolling, in particular, should be used with caution for diagnostic reasons (see section 2.2.1). For detailed analyses, it may also be necessary to infer later from the data what a test-taker saw at a point in time (see section 2.8). Finally, it must be considered whether the entire screen or only parts of the display should scroll, for example, if a navigation area is to be permanently displayed on the screen.

Responsive Design: A more typical way for websites to deal with different resolutions and screen sizes is the use of so-called Responsive Designs. In Responsive Designs, the arrangement and display of the content are adapted to the actual available area (View Port). In the context of computer-based assessments, the use of responsive designs must be weighed up against the extent to which this can be reconciled with the goal of standardizing assessments.

2.4.1 Full Page Items

Full Page Items represent an item design in which minimal non-solution interactions with the assessment platform are required. Full Page Items can be implemented without scrolling and with scrolling, as shown in Figure 2.5. The central feature of Full Page Items is that they are presented exclusively on the screen, without being surrounded by a navigation area. Necessary navigation elements are displayed within the item when they should be available.

[image: Example for full page navigation. ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/FullPageNavigationExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/FullPageNavigationExample.zip)).]

FIGURE 2.5: Example for full page navigation. (html|ib).

The design and presentation of items should always clarify whether they are instructional text or a question. In addition, it should be explained (either in the instruction at the beginning of the assessment or through short instructional texts) how the item can be processed and answered. If multiple pages are used, the navigation buttons must be repeated on each page.

How to do this with the CBA ItemBuilder? The creation of Full Page Items is the standard procedure for the CBA ItemBuilder when only the necessary navigation elements for switching between pages and finishing the task (see Next-Taskcommand in section 3.12.1) are placed on each page.

Forced Choice: A unique response format in which items are typically displayed without navigation is Forced Choice. In this format, which is also used for questionnaires, the test takers are not offered the option of not answering. As shown in the examples in Figure 2.6, the system automatically navigates to the next question as soon as an answer is given.

[image: Example for forced choice navigation. ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/NavigationExampleForcedChoice/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/NavigationExampleForcedChoice.zip)).]

FIGURE 2.6: Example for forced choice navigation. (html|ib).

Multiple forced choice questions can also be presented on one page and still be administered in a fixed order, as the example in Figure 2.6 shows.

[image: Example for multiple forced choice questions per page. ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/NavigationExampleMultipleForcedChoices/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/NavigationExampleMultipleForcedChoices.zip)).]

FIGURE 2.7: Example for multiple forced choice questions per page. (html|ib).

Blocked Item Response In cognitive and non-cognitive assessments, rapid responding (see Rapid Guessing and Rapid Responding in section 2.5.3) is phenomena that compromise the validity of responses. A naive way to limit response elicitation is to disable the buttons for a limited time. Example 3 in Figure 2.6 shows this concept in combination with the forced-choice response format, Figure 2.8 shows this concept with other response formats (see also Persic-Beck, Goldhammer, and Kroehne 2022).

[image: Examples for *Blocked Item Response* with different response formats ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/BlockedItemResponseExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/BlockedItemResponseExample.zip)).]

FIGURE 2.8: Examples for Blocked Item Response with different response formats (html|ib).

2.4.2 Breaks / Stopp Items

For different operational reasons, it may be necessary to interrupt and pause the flow of computerized instruments or to insert positions where test-takers should take a break. According to the logic described in this section, these pause pages are Full Page Items, since no further navigation should be possible.

Magic Word: In school assessments, test administration is often organized as on-site group tests with a test administrator present in the room. If the assessment is administrated using secure offline environments (e.g. in a kiosk mode, see 7.2.3), breaks for the group can be easily implemented with a Magic Word (i.e., a piece of information that functions as a password), which is only announced by the test administrator at the time when every test-takers should start with a following section.

Dashboards: Computer-based assessments are also often administered in network environments (e.g., web-based), enabling centralized control across test-takers. So-called Dashboards for test management can show, for example, which task a test-taker is currently working on or whether a test taker needs support. Dashboards can also be used for the control of group testing or for monitoring online test administrations, for instance, by remote interviewers.

2.4.3 Within-Item Navigation

As soon as several input fields or components with an input focus are placed on a page, the possibility or the necessity for a Within-Item Navigation arises. Only particular response formats, such as Point and Click response formats (see, for instance, section 3.9.10 for so-called ImageMaps) and Drag and Drop response formats (see section 4.2.6) do not work with input focus.

C-Test (Text Completion Test): In the C-Test (Text Completion Test) in Figure 2.9,9, the text entries can be made in any order. Nevertheless, switching from one gap to the next with the tab key is also possible to allow fast editing.

[image: Example for a C-Test / Text Completion Test ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SimpleCTestExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SimpleCTestExample.zip)).]

FIGURE 2.9: Example for a C-Test / Text Completion Test (html|ib).

How to do this with the CBA ItemBuilder? If many input fields are combined on one page, as shown in the example in Figure 2.9, then controlling the tab order and setting your input focus to the first text field is recommended. Item authors can define the tab order (see section 3.7.7), and input focus can also be set with a particular operator (see section 4.4.6).

If more than one answer can be given on a page, it may also make sense not to restrict the processing order due to construct-related considerations. An example of a test originally developed for paper-based assessment is shown in Figure 2.10. In this so-called Digit Symbol Substitution Test (representation based on Jaeger 2018), it is implicitly assumed that the test is processed in sequential order.

[image: Example for a *Digits Symbol Substitution Test* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/DigitsSymbolSubstitutionTestExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/DigitsSymbolSubstitutionTestExample.zip)).]

FIGURE 2.10: Example for a Digits Symbol Substitution Test (html|ib).

In the computerization with the CBA ItemBuilder shown in Figure 2.10, the processing can happen in any order and it must be additionally explained in the instruction whether only the consecutive items should be evaluated.

2.4.4 Within-Unit Navigation

When multiple tasks share a common stimulus, the tasks and the stimulus material are often referred to as a Unit. Within Units, dependencies can arise, i.e., answering individual subtasks is influenced by preceding or subsequent subtasks. Accordingly, computerization often allows subtasks to be answered and re-answered in any order, which leads to so-called Within-Unit-navigation. Figure 2.11 illustrates an example for within-unit navigation based on the separation between Question and Stimulus, as used, for instance, in the Programme for International Assessment of Adult Competencies (PIAAC, see Figure 2.2. in OECD 2019 that shows the PIAAC user interface). 10

[image: Example for question and stimulus navigation ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/NavigationExampleStimulusQuestion/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/NavigationExampleStimulusQuestion.zip)).]

FIGURE 2.11: Example for question and stimulus navigation (html|ib).

The left side in Figure 2.11 shows the individual questions, which can be navigated between using the > and < buttons. The split stimulus can be seen permanently on the right side in Figure 2.11. The stimulus itself can provide further opportunities for interaction for complex interactive items. The ? button indicates how additional editing help can be integrated into the unit.

How to do this with the CBA ItemBuilder? The separation of items into different areas, e.g., a stimulus area and individual task-pages as shown in Figure 2.11, is possible in the CBA ItemBuilder by using either special page types (e.g., X-Pages, see section 3.4.2) or by using partial pages (e.g., PageAreas, see section 3.5.4).

2.4.5 Between-Unit / Test-Level Navigation

For technical reasons, there is no need to restrict navigation within computerized tests. Just as test-takers could flip back and forth in paper-based test booklets, they could do the same in computer-based assessments.

Figure 2.12 shows schematically how free navigation could look, illustrated for a unit with only one task, a unit with multiple tasks and scrolling, and a unit with a text stimulus and multiple tasks.

[image: Examples for free *Between-Unit* navigation ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/FreeNavigationExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/FreeNavigationExample.zip)).]

FIGURE 2.12: Examples for free Between-Unit navigation (html|ib).

How to do this with the CBA ItemBuilder? For implementing assessments with the CBA ItemBuilder, it must be acknowledged that completely free navigation with the means of the CBA ItemBuilder is only possible within Tasks. Each CBA ItemBuilder Task can request navigation to a next and a previous Task (see Runtime Commands in section 3.12), but the delivery software is responsible for responding to these requests. However, delivery software can also provide an additional user interface that can be used to drive any CBA ItemBuilder Tasks (see Integrated Item Presentation in the next section).

From a psychometric/diagnostic perspective, it should be considered what reason free navigation is necessary and whether the advantages of this item presentation outweigh the disadvantages already present with paper-based assessment. Suppose test-takers can freely navigate between a more significant number of items. In that case, it can be assumed that the influence of test-taking strategies such as skipping items when needed and returning later, is increased.

In practice, the options for navigation are often restricted, either due to psychometric considerations (for instance, to support adaptive testing), or because of operational considerations (for instance, to simplify the implementation of time restriction). For instance, backward navigation across Units (i.e., the possibility to go back to a previous unit) can be disabled in CBA (see, for instance, Cochran et al. 2020). As shown in Figure 2.13, test-takers can move freely only within a unit. When test-taking requests to navigate forward from the last task or page of a unit, a pop-up message is displayed informing the test-taker that it will be impossible to return to the previous tasks.

[image: Examples for restricted *Between-Unit* navigation ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/WithinUnitNavigationExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/WithinUnitNavigationExample.zip)).]

FIGURE 2.13: Examples for restricted Between-Unit navigation (html|ib).

How to do this with the CBA ItemBuilder? Feedback to test-takers about potential navigation restrictions is just one of the many options for providing targeted information during test-taking (see 2.9.1). They can be realized with the CBA ItemBuilder, for instance, using dialog pages (see section 3.15), so-called Page Areas (see section 3.5.4), or by so-called Conditional Links (see section 4.3).

2.4.6 Integrated Item Presentation

In various contexts, items are displayed and integrated within other web application or web-based deliveries. This includes, for instance, the integration of CBA ItemBuilder items within QTI-based deployment software (such as TAO) as Portable Custom Interaction (PCI) (see section 7.4), or more general embedding CBA ItemBuilder items using the so-called TaskPlayer-API (see section 7.7). Another possible scenario is the integration of assessments within learning management systems (e.g. Moodle) based on the LTI interface (see section 7.5.8).

In scenarios where assessment components are integrated into other deliveries, the following points need special consideration:

	Presentation Size: The size of the item displayed within other software environments is often smaller than the available space on the screen. Therefore, the items may need to be made smaller so that they can be answered reasonably in the embedded presentation. This can also result in the display of scroll bars on different screen sizes if the web application adjusts the size of the integrated items (responsive design).

	Re-Visits / Restore: The integration of items within external applications may result in items being terminated and re-entered by external navigation. To ensure a coherent picture for the test-takers and that the content shows the last working state on each new visit, the items must save their state before exiting.

	Full Screen: Full-screen presentation control must take into account when items are integrated into other web applications.

How to do this with the CBA ItemBuilder? The CBA Presentation Size must be defined for each CBA ItemBuilder project (see section 3.2.2). The TaskPlayer-API allows to store the item state at each point in time (see section 7.7). Commands to controll full screen presentation (see section 3.12.3) might not work in Integrated Item Presentation.

Suppose assessment components, which themselves allow inner navigation or should not be terminated at any time, are integrated into other environments (e.g., via PCI in TAO, see section 7.4). In that case, the navigation in the external application must be blocked.

2.5 Scoring and Calibration

Many psychometric CBA applications rests on principles of psychological and educational measurement (see, e.g., Veldkamp and Sluijter 2019) and typical design principles for tasks/items and tests that also apply to non-technology-based assessments are still valid (see, e.g., Downing and Haladyna 2006). For instance, approaches to increase the measurement efficiency use a particular item response theory (IRT) model and (pre-)calibrated item parameters (see also section 2.7):

	Difficulty Parameter or Threshold Parameters,

	Discrimination Parameter (Loading) and

	(Pseudo)Guessing Parameter.

Which item parameters are used to model the probability of a correct response (or a response in a particular category) as a function of a one- or multidimensional latent ability depends on the choice of a concrete IRT model (see, for instance, Embretson and Reise 2013 for a general introduction). Bolt (2016) list the following IRT models for CBA:

	Models for innovative item types (polytomous IRT models and multidimensional IRT models) and models related to testlet-based administration (see section 2.5.1)

	Models that attend to response times (see section 2.5.6)

	Models related to item and test security (see section 2.10.1)

Further areas of application for (IRT) models in the context of CBA include:

	Models to deal with missing values (see section 2.5.2)

	Models to deal with rapid guessing (see section 2.5.3)

	Models for automated item generation (see section 2.6)

Another class of IRT models that is often used with CBA data are Cognitive Diagnostic Models (CDM, see, e.g., George and Robitzsch 2015 for a tutorial)). Additional information, available when data are collected with CBA, such as response times and more general process data (see section 2.8) can be used in cognitive diagnostic modeling (e.g., Jiao, Liao, and Zhan 2019).

2.5.1 Scoring of Items

Computer-based assessment consists of a sequence of assessment components, i.e., instructions and between-screen prompts, and purposefully designed (digital) environments in which diagnostic evidence can be collected. The atomic parts for gathering diagnostic evidence are called items, typically consisting of a prompt (or a question) and the opportunity to provide a response. Items can include introductory text, graphics, tables, or other information required to respond to the prompt, or questions can refer to a shared stimulus (creating a hierarchical structure called units). The raw response provided to items is typically translated into a numerical value called Score.

Dichotomous vs. Polytomous Scoring: For the use of responses to determine a person’s score, a distinction is commonly made between dichotomous (incorrect vs. correct) and polytomous (e.g., no credit, partial credit, full credit). While this distinction is essential, for example, for IRT models, these two kinds are not mutually exclusive concerning the use of information collected in computer-based assessment. Identical responses can be scored differently depending on the intended use. For instance, a polytomous score can be used for ability estimation, while multiple dichotomous indicators for specific potential responses can provide additional insight in formative assessment scenarios.

How to do this with the CBA ItemBuilder? The concept implemented to score responses provided in CBA ItemBuilder tasks (see chapter 5) allows to define so-called Scoring Conditions (see section 5.3.2). These conditions provide the basic evidence, that can be used to create either dichotomous (only one out of two possible conditions) or poloytomous (one out of multiple possible conditions) variables (called Classes in the CBA ItemBuilder terminology, see also section 1.5).

Multiple Attempts & Answer-Until-Correct: In computer-based assessments, the process of the test-taking and responding can also be included in the scoring. This allows scenarios in which test-takers can answer an item multiple times (e.g., Attali 2011) or until correct (e.g., DiBattista 2013; Slepkov and Godfrey 2019). While this goes beyond the simple IRT models, it can be included in addition to a traditional scoring of the (first) attempt or the final response prior to a provided feedback (see section 2.9).

How to do this with the CBA ItemBuilder? The scoring options provided by the CBA ItemBuilder are rich and might look complex or confusing at first sight. The perceived complexity is because the CBA ItemBuilder disentangles the components used to create the interactive environments (required for test-takers to respond, see chapters 3 and 4) from the formulation of scoring conditions (required to translate the provided responses into scores, see chapter 5).

Constructed Response Scoring: Scores can be calculated automatically for closed response formats (i.e., items that require selecting one or multiple presented response options). For response formats beyond that, scoring can require human raters, pattern recognition (e.g., using Regular Expressions, see section 6.1), or Natural Language Processing (NLP) techniques and machine learning (typically using some human-scored training data, see, for instance, Yan, Rupp, and Foltz 2020).

How to do this with the CBA ItemBuilder? The CBA ItemBuilder can use Regular Expressions for scoring text entry (see section 5.3.4) and allows to convert text entry into result variables (see section 5.3.10) that can be used (outside) of the CBA ItemBuilder Runtime to score constructed response items.

Scoring of Complex Tasks: Special scoring requirements may arise for complex tasks that consist of multiple subtasks or where multiple behavior-based indicators are derived. Possible approaches for scoring multiple responses include aggregating the total number of correct responses, used, for instance, to score C-tests as shown in Figure 2.9 (see, for instance, Harsch and Hartig 2016 for an example). If (complex) items share a common stimulus or if for any other reason responses to individual items influence each other, dependencies may occur that require psychometric treatment (see, for instance, the Testlet Response Theory in Williamson, and Bejar 2006).

How to do this with the CBA ItemBuilder? For scoring complex items, the CBA ItemBuilder allows the define pieces of evidence in terms of (many different) properties of the test-taking process and responses to the different interactive elements. Multiple individual Scoring Conditions can be combined using logical operators to formulate (intermediate) scoring variables.

The scoring of answers is, among other things, the basis for automatic procedures of (adaptive) test assembly (see section 2.7) and for various forms of feedback (see section 2.9), among others regarding the completeness of test processing. For this purpose, a differentiated consideration of missing responses is also necessary, as described in the following sub-section.

2.5.2 Missing Values

Scoring can also take the position of items within assessments into account. This is typically done when differentiating between Not Reached items (i.e., responses missing at the end of a typically time-restricted section) versus Omitted responses (i.e., items without response followed by items with responses). Computer-based assessment can be used to further differentiate the Types of Missing Responses, resulting in the following list:

	Omitted responses: Questions skipped during the processing of a test lead to missing values typically described as Omitted Responses. How committed responses should be taken into account when estimating item parameters (see section 2.5.4) and estimating person parameters (see section 2.5.5) depends on the so-called missing-data mechanisms (see, for instance, Rose, von Davier, and Nagengast 2017).

	Not reached items: If there is only a limited amount of time provided to test-takers to complete items in a particular test section, answers may be missing because the time limit has been reached. These missing responses are called not reached items. The arrangement of the items and the possibilities of navigation within the test section must be considered for the interpretation of missing values as Not Reached.

	Quitting: An example that tasks can be incorrectly classified as Not Reached is described in Ulitzsch, von Davier, and Pohl (2020). Missing values at the end of a test section can also indicate that the test was terminated if testing time was still available.

	Not administered: Missing responses to items that were not intended for individual test-takers, for instance, based on a booklet design (see section 2.7.2). Since these missing values depend on the test design (see section 2.7.2), they are often referred to as Missing by Design.

	Filtered: Items may also be missing because previous responses resulted in the exclusion of a question.

Missing Value Coding: In computerized assessment, there is no reason to wait until after data collection to classify missing responses. Features of interactive test-taking can be considered during testing to distinguish missing responses using the described categories as part of scoring (see chapter 5).

How to do this with the CBA ItemBuilder? The classification of missing values for assessments implemented with the CBA ItemBuilder requires differentiating two levels: Within individual assessment components, the scoring must be implemented in a way allowing to differentiate between Not Reached vs. Omitted responses. If applicable, missing responses due to filtered questions must also be coded accordingly. In addition, the software used to deliver the assessment components is expected to classify missing responses as missing by design (or not administered) if items in selected assessment components were not intended for individual test-takers. Finally, the delivery software must also classify missing responses as not reached due to a time limit, using the information about the test design and the scheduled item sequence.

Use of Log-Data for Missing Value Coding: An even more differentiated analysis of missing responses is possible by taking log data into account. The incorporation of response times for the coding of omitted responses (e.g., A. Frey et al. 2018) is one example for the use of information extracted form log data (see section 2.8). Response elements that have a default value require special attention. For instance, checkboxes (see section 3.9.3) used for multiple-choice questions have an interpretation regarding the selection without any interaction (typically de-selected). Log data can be used to differentiate whether an item with multiple (un-selected) checkboxes has been solved or the item should be coded as a missing response.

How to do this with the CBA ItemBuilder? Information from individual events during the test-taking process can be included using so-called scoring operators, which can also account for variables (see section 4.2) and internal states of the item (see Finite-State Machine in section 4.4). Since these events are also captured in CBA ItemBuilder log events (see section 2.8), a fine-grained differentiation of missing values is also possible as part of a log data analysis.

Missing responses can provide additional information regarding the measured construct, and their occurrence may be related to test-taking strategies. As described in the next section, rapid missing responses may also be part of a more general response process that is informative about test-taking engagement.

2.5.3 Rapid Guessing

Computer-based assessment can make different types of test-taking behaviors visible. A simple differentiation into solution behavior and rapid guessing was found to be beneficial (Schnipke and Scrams 1997), that can be applied, when response times (as discussed in the previous section 2.2.2) are available for each item or when an item design is used that allows interpreting individual time components (see section 2.8.2). Rapid guessing is particularly important for low-stakes assessments Goldhammer, Martens, and Lüdtke (2017).

While solution behavior describes the (intentional) process of deliberate responding, a second process of very fast responding can be observed in many data sets. Since both processes can often be clearly separated when inspecting the response time distribution, a Bimodal has become a central validity argument (see, for instance, Wise 2017) for focusing on Rapid Guessing as a distinguished response process. Using the bimodal response time distribution, a time threshold can be derived, and various methods exist for threshold identification (e.g., Soland, Kuhfeld, and Rios 2021), using either response time and or (in addition to) other information-based criteria (e.g., Wise 2019).

How to do this with the CBA ItemBuilder? The interpretation of time measures requires an appropriate item design (see section 2.8.2). If time components can be identified as response time, time thresholds can be used to classify responses as Rapid Guessing, either during the assessment or as part of the data post-processing (see section 8.6). If the implemented between-item navigation (see section 2.4) allows to measure time for item omission, Rapid Omission can also be classified as additional indicator for low test-taking engagement.

Alternatively to simple time thresholds, mixture modeling (e.g., Schnipke and Scrams 1997; Lu et al. 2019) can be used to differentiate between solution behavior and rapid guessing when post-processing the data. Treatments of rapid responses include response-level or test-taker-level filtering (see Rios et al. 2017, for a comparison). However, similar to missing values (see above), a treatment of responses identified as rapid guessing might require to take the missing mechanism into account (e.g., Deribo, Kroehne, and Goldhammer 2021). Further research is required regarding the operationalization of rapid guessing for complex items (see, e.g., Sahin and Colvin 2020, for a first step in that direction) and validating responses identified as Rapid Guessing (e.g., Ulitzsch, Penk, et al. 2021). Another area of current research is the transfer of response-time-based methods to identify Rapid Guessing to non-cognitive instruments and the exploration of Rapid Responding as part of Careless Insufficient Effort Responding (CIER), either using time thresholds or based on mixture modeling (e.g., Ulitzsch, Pohl, et al. 2021).

2.5.4 Calibration of Items

After constructing a set of new assessment tasks (i.e., single items or units), the items are often administered in a pilot study (often called calibration study). Subsequently, a sub-set of items is selected that measures a (latent) construct of interest in a comparable way, where the selection of items is typically guided in the context of the Item Response Theory (see, e.g., Partchev 2004) regarding Item Fit, and so-called Item Parameters are estimated. Different tools and, for instance, R packages such as TAM (Alexander Robitzsch, Kiefer, and Wu 2022) can be used to estimate item parameters and to compute (item) fit indices.

How to do this with the CBA ItemBuilder? Item parameters are not stored within the CBA ItemBuidler project files because identical items might be used with different parameters, for instance, to compensate for Differential Item Functioning (DIF) or to aknowledge Parameter Drift (PD).

Missing values can be scored in different ways for item calibration and ability estimation (see Alexander Robitzsch and Lüdtke 2022 for a discussion), depending, for instance, on assumptions regarding the latent missing propensity (see, for instance, Koehler, Pohl, and Carstensen 2014). The treatment of rapid guessing can improve item parameter estimation (e.g., Rios and Soland 2021; Rios 2022).

IRT models exist for dichotomous and polytomous items (see section 2.5.1). When multiple constructs are collected together, multidimensional IRT models can increase measurement efficiency (see, e.g., Kroehne, Goldhammer, and Partchev 2014).

Known item parameters are a prerequisite for increasing measurement efficiency through automatic test assembly and adaptive testing procedures (see section 2.7), and techniques such as the Continuous Calibration Strategy (Fink et al. 2018) can help to create new Item Pools.

How to do this with the CBA ItemBuilder? The accuracy of item parameters can be relevant, for instance, if adaptive testing is used that assumes known (and fixed) item parameters. For these applications, the calibration study should be performed with similar tools as the primary assessment to avoid mode effects due to different administration modes (i.e., paper vs. computer) or due to different computerization (see section 2.2.1).

Item parameters are only valid as long as the item remains unchanged. This limits the possibilities for customizing items, even if they are shared as Open Educational Resources (OER, see section 8.7.4).

2.5.5 Ability Estimation

While the estimation of item parameters is typically done outside the assessment software as part of test construction, the computation of a raw score (e.g., the number of items solved) or the estimation of a (preliminary) person-ability (using IRT and based on known item parameters) is a prerequisite for the implementation of methods to increase measurement efficiency (multi-stage testing or adaptive testing, see section 2.7). Rapid guessing (see section 2.5.3, e.g., Wise and DeMars 2006) as well as informed guessing can be acknowledged when estimating person parameters (e.g., Sideridis and Alahmadi 2022).

How to do this with the CBA ItemBuilder? Classes with assigned scoring conditions are defined in the CBA ItemBuilder without specifying how the resulting variables will be used to score the test-taker’s ability. For this purpose, an additional codebook should be part of the test delivery software, which assigns numerical values to the (nominal) scoring conditions. By separating the (nominal scaled) scoring conditions defined within CBA ItemBuilder tasks and the nominal or ordinal scaled weights, CBA ItemBuilder projects can remain unchanged even when switching between different ways of using item scores based on empirical results (e.g., model comparison).

2.5.6 Incorporation of Response Times

A long research tradition deals with the incorporation of response times in psychometric models. Based on the hierarchical modeling of responses and response times (van der Linden 2007) response times can be used, for instance, as collateral information for the estimation of item- and person-parameters (van der Linden, Klein Entink, and Fox 2010). Response times (and more generally, Process Indicators, see section 2.8) used to improve item response theory latent regression models (Reis Costa et al. 2021; Shin, Jewsbury, and van Rijn 2022). In combination with missing responses response-time related information (in terms of not reached items) can also be included in the ability estimation using polytomous scoring (Gorgun and Bulut 2021).

2.6 Automated Item Generation

Automatic item generation (AIG) is used to describe the process of generating items using computer technology, typically using some kind of models (e.g., cognitive models, Gierl, Lai, and Turner 2012). A template-based approach (Gierl and Lai 2013) formulates an item model (also called, for instance, schema or blueprint) containing the components of a task that can be varied to generate items. Item models can be described regarding the number of layers in which item clones (i.e., generated items) differ from a source. While AIG from an IRT perspective, for instance, generating items on the fly was suggested more than ten years ago (e.g., Embretson and Yang 2006), current research incorporating machine learning techniques such as deep learning (e.g., von Davier 2018) and models developed for natural language processing can be expected to provide promising new methods and applications (see for a review, e.g., Das et al. 2021; and for an example Attali et al. 2022).

2.7 (Automated) Test Assembly

When more items are available than can or should be completed by a test-taker, the term Test Assembly is used to describe the psychometric process of combining items to test Booklets or Rotations. The test assembly process usually requires items with known item parameters (see section 2.5.4) and can be performed manually or automatically (van der Linen 2006).

The research literature on automated test composition provides insight into criteria that are considered when assembling tests. The primary criterion is typically provided by item response theory, i.e., the selection of items to optimize the measurement by taking already available information about the anticipated test-takers (for instance, the expected ability distribution) into account.

Constraints: Approaches that formalize the test assembly (e.g., Diao and van der Linden 2011) can also incorporate additional criteria (i.e., constraints for the test assembly when conduced, for instance, in R, see Becker et al. 2021), such as:

	Content: Content areas or domains of requirements, defined as test specification in relation to an underlying assessment framework (i.e., the test blueprint)

	Response Format: Response format or number of response alternatives, or the position of the correct responses

	Item Position: Balancing the position of items or keeping the position of certain items constant (e.g. link items)

	Response Time: Expected time to solve the item (can be used to assemble tests that with comparable time limits)

Constraints can be considered in test composition to make different individual tests comparable or to balance and account for item properties at a sample or population level. Moreover, constraints might also be used to achieve further operational goals, such as the interpretability of adaptive tests at the group level for formative assessment purposes (e.g., Bengs, Kroehne, and Brefeld 2021).

2.7.1 Fixed Form Testing

Assessments with a fixed set of items can be seen as the typical use case for test deployments, either in the preparation of IRT-based applications of tailored testing (i.e., to collect data for item calibrations) or as the final output of test development. As shown in Panel A of Figure 2.14, a fixed form testing requires the administration of assessment components as linear sequence.

[image: *Fixed Form Testing* with linear sequence of *Tasks*]

FIGURE 2.14: Fixed Form Testing with linear sequence of Tasks

How to do this with the CBA ItemBuilder? Simple uses of the TaskPlayer API (see section 7.7) or the integration of CBA ItemBuilder items to Portable Custom Interactions (PCI, see section 7.4) allow the use of one or more CBA ItemBuilder tasks administered in a predefined order.

Criteria for item selection, optionally taking into account constraints, is reflected in the selection of Tasks that are included in the linear sequence.

A first differentiation of the structure also of Fixed Form test assemblies (see Panel B in Figure 2.14) concerns the distinction in assessment components which are administered BEFORE the actual tasks (Prologue), the tasks themselves (Main), and the assessment components which are administered AFTER the main tasks (Epilogue). The subdivision made can be helpful if, for example, a time limit is required for a part of the assessment components (Main),11 but the time measurement does not begin until the instruction is completed (Prologue) and a uniform test-taker enactment is to be implemented (Epilogue).

Test designs using Fixed Form Testing can also incorporate multiple tests, domains or groups of Tasks as shown in Figure 2.15, by repeating multiple Test Blocks.

[image: *Fixed Form Testing* with multiple *Blocks* or *Parts*.]

FIGURE 2.15: Fixed Form Testing with multiple Blocks or Parts.

The difference between Panel C (multiple Test Blocks within one Test Part) and Panel D (multiple Test Parts) in Figure 2.15 is only cosmetic, as long as Test Parts are also administered in a linear sequence. However, test deployment software might add the possibility to define the Routing between Test Parts differently than Routing within Test Parts. Moreover, as soon as different technologies come into play, Test Parts might use test content created with different tools (if supported by the test deployment software). In a typical educational assessment, a specific part (often administered at the end of a session) is dedicated to an additional questionnaire, that could serve as the content of the Block shown in the right part of Panel D in Figure 2.15.

2.7.2 Booklet Designs and Rotations

For various operational reasons, it may be necessary to define which Test Parts of a study definition are administered under which condition. In this way, for example, consent to test participation in different parts of an assessment can be incorporated, or the order of domains can be balanced or controlled.

Rotations of Test Content: One possibility to support such scenarios with a potential test delivery software is to allow conditional skipping (i.e., filtering) of Test Parts. A condition can be, for instance, a Preload-variable (i.e., a variable that contains information available about test-takers prior to an assessment; see section 7.5.3).

Figure 2.16 shows an example where a Test Part (“E-2”) is only administered if a hypothetical Preload-variable “Consent” has the value “true” (i.e., if, for example, parents have given their consent for a child to answer questions combined as Test Part “E-2”).

[image: Conditional *Test Part* using between-part *Routing*.]

FIGURE 2.16: Conditional Test Part using between-part Routing.

Using multiple If-else-if-conditions (or a Switch-condition), multiple Rotations can be implemented, for instance used to make identical Test Parts usable in different sequences.

Booklet Designs: In large-scale assessments, multiple test forms or Booklets are also used to balance items across students, for instance, to ensure content coverage (e.g., A. Frey, Hartig, and Rupp 2009) or to link a huge amount of items (e.g., Yousfi and Böhme 2012). Defining individual Test Parts for items or combination of items (called, for instance, Clusters) can become cumbersome. Instead, test deployment software can make use of the underlying structure that provides rational for creating booklets, for instance, balancing the position of clusters in a permutation design (see Figure 2.17).

[image: Example for a simple *Booklet Design* using within-part *Routing*.]

FIGURE 2.17: Example for a simple Booklet Design using within-part Routing.

The booklet design illustrated in Figure 2.17 has a random component (i.e., a random number is created during runtime for each test-taker and the value is is assigned to the variable "VBooklet") that is used to select the order in which two Clusters are administered. The clusters are created statically by listing tasks in a particular sequence in a separate definition that is re-used in the test assembly.

Booklets with Targeted Difficulty: One use case for multiple booklets is to align test difficulty or length with prior information about the test-takers. For this purpose, variable(s) used in condition(s) to select the Clusters or Tasks to be administered can contain information about test-taker, provided to the test deployment software as so called Preload-variables. If the Preload-variables contain information gathered in longitudinal designs in a previous assessment, a simple form of multi-stage testing can be implemented (Pohl 2013).

2.7.3 Multi-Stage Testing

If an (intermediate) scoring of at least some responses of previously administered items is feasible at runtime (i.e., if tasks contain items that can be automatically scored, see section 2.5.1), tailored testing becomes possible. A typical goal for multi-stage tests is to tailor the items’ difficulty to the test takers’ ability. Suppose there is no prior information that can be used as Preload-variables. In that case, this goal can be achieved by evaluating the test-taker’s capability after administering a first stet of tasks (a first stage in a test the combines multiple stages). As shown in Figure 2.18, as soon as a list of Tasks that constitute the first stage are administered, a variable "VStage1Score" can be computed that serves as the condition for a subsequent stage. In the most simplest form, a raw score is used as criterion, allowing to select the second stage by comparing the raw score of the first stage to a cut-off value.

Administration of Tasks within a Stage can allow test-takers to Navigate between units (see section 2.4.5), since the scoring is only done after the administration of all Tasks that create a Stage. In Figure 2.18 this is made explicit by illustrating the variable "VStage1ResultList", a list that contains all results gathered when administrating the Tasks of the first Stage.

[image: Basic Principle of *Multi-Stage Testing*]

FIGURE 2.18: Basic Principle of Multi-Stage Testing

The tasks used for a particular stage12 can be defined statically in the test deployment software (see the definition for Stage "S2-A" and Stage "S2-B" in Figure 2.18) or stored in a variable (i.e., a list with at least one Task, see "VStage1TaskList"). Having the stage definition not static in the test specification (i.e., the configuration of the deployment software) allows for advanced approaches such as On-the-Fly Multistage Testing (e.g., Zheng and Chang 2015). A function that returns a list of tasks (selected from a larger pool of candidate items) based on the provisional estimation (temporary) or expected ability is required (see next section 2.7.4 about Computerized Adaptive Testing).

The list of results shown in Figure 2.18 can also be used in an IRT-based function for ability estimation (see section 2.5.5) if the raw score (e.g., the number of solved items) is not sufficient for routing between stages. An IRT ability estimate (i.e., the return value of an IRT-based function for ability estimation) is either a scalar representing a uni-dimensional ability estimate or a vector representing a multidimensional ability estimate.

2.7.4 Computerized Adaptive Testing

Computerized adaptive testing (CAT) is a method to increase measurement efficiency (see, for instance, Weiss 1982) based on Item Response Theory (IRT). Either single items or sets of items (Item Stages) are selected with respect to an item selection criterion such as the Maximum Fisher Information for dichotomous items (see van der Linden and Glas 2000 for an introduction), typically for a specific Provisional Ability Estimate. Adaptive testing can be illustrated as flow diagram as shown in Figure 2.19, based on a sequence of steps embedded into the CAT Loop.

[image: Simplified Illustration of *Computerized Adaptive Testing*.]

FIGURE 2.19: Simplified Illustration of Computerized Adaptive Testing.

CAT Algorithms (i.e., algorithms used for adaptive tests) administer items until a particular Termination Criterion is reached. Termination Criteria are created based on the Test Length as the number of administered items (resulting in Fixed Length test) or the accuracy of the ability estimate (resulting in Variable Length test) or combinations. Hence, after initializing the adaptive test, a loop (see keyword While in Figure 2.20) is used to make sure the adaptive algorithm is terminated not before the termination criteria are met. In operational adaptive tests multiple criteria (including, for instance, that no suitable item was found in the Item Pool) can be used.

Depending on the select IRT model used to calibrate the items in the Item Pool (see section 2.5.4), a unidimensional (i.e., a scalar) or multidimensional (i.e., a vector) ability estimate is used as Start Value, as Provisional Ability Estimate and as the Final Ability Estimate. During the Initialization of an adaptive test, prior information can be used to adopt the Start Value (i.e., the ability estimate that is used to select the first item(s) of the adaptive test). Preload-variables can be used, for instance, to assign group-specific Start Values (see Figure 2.20 for an example).13

How to do this with the CBA ItemBuilder? Multi-stage testing for simple use-cases can be implemented within CBA ItemBuilder Tasks (see, for instance, section 6.7.1). Multi-stage testing across different Tasks requires a test deployment software that provides the required IRT functions for ability estimation and, if used, for item selection (see, for instance, section 7.5) or the integration of statistical software such as R [see section 7.3].

[image: Illustration of *Computerized Adaptive Test Initialization*]

FIGURE 2.20: Illustration of Computerized Adaptive Test Initialization

Items are selected from an Item Pool (i.e., a list of Tasks with known Item Parameters, see section 2.5) and item selection algorithms can incorporate additional constraints (see section 2.7). For constraints management (see, for instance, Born and Frey 2017), additional parameter stored in an Item Pool can be required, for instance, for Exposure Control (e.g., Sympson-Hetter-Parameter, Hetter and Sympson 1997) and for Content Balancing (e.g., answer keys, see Linden and Diao 2011).

Item selection either results in one single item (Item-by-Item adaptive testing) or a list of items (Item Stages), similar to On-the-fly Multi-Stage Testing. As described above, a list of items (with at least on entry) can be used to store the selected items used for test administration (see "SelectedItems" in Figure 2.21).

[image: Illustration of *Computerized Adaptive Testing Loop*]

FIGURE 2.21: Illustration of Computerized Adaptive Testing Loop

Navigation between Tasks of an Item Stage can be allowed since item selection only takes place after administering all Tasks. Scoring of all or selected administered items (see section 2.5.1) is required for the subsequent update of the ability estimation. Scoring can take place inside of the item or based on the list of result data (see "SelectedItemsResults" in Figure 2.21).

How to do this with the CBA ItemBuilder? Adaptive testing requires a test deployment software that either provides the required IRT functions for item selection and ability estimation (see, for instance, section 7.5) or the integration of statistical software such as R (e.g., Scalise and Allen 2015, see also section 7.3).

2.8 Log and Process Data

Computer-based assessments provide the opportunity to collect not only the final work product (i.e., raw responses and scored responses, see section 2.5.1) but also to allow the collection of so-called log data that origin from students’ interactions with the computer-based assessment platform (e.g., clicked buttons, selected radio buttons or checkboxes, entered text, mouse-moves, etc.) or internal system changes (e.g., timers). The examination of these log data from cognitive ability testing has gained increased attention (Goldhammer and Zehner 2017), for instance, in educational research, since the computer-based assessment was introduced in large-scale assessments (e.g., Greiff et al. 2016).

2.8.1 Basic Terminology

In the context of computer-based assessment, using log data is still a relatively new field of research. Different terms like stream data, log file data, event data, process data, and others are used (and sometimes mixed). In order to illustrate the meaning and use of log data for the theory-based construction of process indicators and to provide guidance concerning potential implementations in the CBA ItemBuilder, a conceptual clarification follows first.

Paradata: Additional information about the test-taking process and the data collection can be understood as part of the so-called paradata, commonly used in social science research (e.g., Kreuter 2013). Kroehne and Goldhammer (2018) summarizes categories of access-related, response-related and process-related paradata.

	Response-related paradata include all user interactions (pointing device like mouse click or touch events, keyboard entries of hardware keyboards or soft keyboards) together with all state changes of components that have different states (components like checkboxes, radiobuttons etc. that can be selected and deselected) and internal states (like timers etc.)

	Process-related paradata cover, for instance, information related to the navigation within assessment instruments (see section 2.4) as well as interactions not directly related to item responses

	Additional assess-related paradata can occur when administering computer-based assessments. For example, this data can inform when an assessment is started, continued, or completed with what type of device.

Describing possible paradata with a taxonomy cannot cover all possible future applications of the additional information available in technology-based assessments. For a deeper look, it is worth considering the underlying nature and origin of this additional information, the emergence of which can be conceptualized in terms of events that create what is called Log Data.

Log Events: Log Data are generated and stored by assessment platforms as events, that inform about how a platform providing assessment material was used and how a provided platform changed (see section 1.6). For the data to be events, we can assume without further limitation that each event contains the following information:

	Time stamp: When did something take place?

	Event name: What has taken place?

The Time Stamp can represent an absolute date and time, or it can represent a relative time difference. The Event Name (or Event type) is only a first nominal distinction of different events. As described in section 1.6, log events in the context of assessments can be expected to contain the following additional information:

	Person identifier: Which test-taker can it be assigned to?

	Instrument identifier: Which part of an assessment can it be assigned to?

The assignment to a person is made by a reference (e.g., in the form of an identifier), and this personal reference must be taken into account in the context of using log data as research data (e.g., in the form of an ID exchange, see section 8.6). The reference to a part of the instrument can be established, for example, by an item identifier or a unit identifier or by describing the level at which a log event occurred (e.g., test-level).

	Event-specific attributes: What additional information describes what happened?

The Event Name describes various possible log events distinguished by an assessment platform. Each Event can provide specific further information, which in addition to the Event Name form the actual content of the log data. Depending on the event type, the event-specific attributes can be optional or required, and attributes can have a data type (e.g., String, Boolean, or some numeric type). If the information provided by the assessment platform with an event-specific attribute is not in atomic format (i.e., if it is not a single piece of information but a data structure, see Kroehne In Preperation for details), storing log data in rectangular data set files becomes more challenging (see section 2.8.4).

	Raw Log Events: From a technical perspective, events in digital environments like web browsers are required and used for programming and implementing digital (interactive) content, such as assessment instruments. Accordingly, a basic layer tries to connect at a low level to make those events available and usable for diagnostic purposes. The resulting log events not specific to any concrete task or assessment content are called Raw Log Events. Raw Log Events have event types that relate the captured information to the event’s origin (e.g., button click, mouse move, etc.). Raw log events are not necessarily schematically identical to the events of the used technological environment in which the (interactive) assessment content is implemented (such as, for instance, HTML5/JavaScript for browser-based content). However, raw log events are platform specific (i.e., different software implementations of identical content can provide different raw log events). Hence, the assessment software defines which raw log events are captured (and how).

How to do this with the CBA ItemBuilder? Assessment components created with the CBA ItemBuilder automatically provide Raw Log Events (see appendix 10.7 for a description of all log events). For interpreting the log events it is crucial to define User Defined Ids (i.e., identifiers for interactive components, that are used as references for the events data provided as trace logs to the components used in the Page Editor to design the assessment content, see section 3.7.4).

	Contextualized Log Event: Based on the assessment content, a second kind of log event can be described: Events that inform about an event concerning a particular action or change in a concrete task or a particular item. These events can be called Contextualized Log Events, and instrument developers (i.e., item authors) need to define which particular action or internal change has which particular meaning. The event name (or event type) can encode the semantics of contextualized log events, and contextualized log events fit (as raw log events) into the concept of log events as described above.

How to do this with the CBA ItemBuilder? The definition of specific Contextualized Log Events as part of the implementation of assessment materials with the CBA ItemBuilder is possible (see Operators to Create Trace Messages described in section 4.4.6) and recommended if the derivation of the events based on the Raw Log Events is either laborious or if theoretically defined Contextualized Log Events are already defined as part of the instrument construction. HTML5 / JavaScript assessment content that is included in CBA ItemBuilder projects (see section 3.14 for a description of ExternalPageFrames) can provide custom log-entries (Raw Log Events or Contextualized Log Events) via the API described in section 4.6.3.

Feature Extraction: Tagging or labeling selected Raw Log Events as Contextualized Log Events can be understood as an example of Feature Extraction (i.e., the derivation of Low-Level Features using the raw log events, see Kroehne and Goldhammer 2018). In this context, Contextualized Log Events are Actions (i.e.,Low-Level Features that occur at a point in time but do not have a time duration). More generally, Actions are contextualized information that can be extracted from the log data. So-called States (i.e., Low-Level Features that have a time duration) supplement the possible features that can be extracted from log events. As a rule, log events indicate the beginning and end of a States, while Actions represent specific Log Events that occur within States.

How to do this with the CBA ItemBuilder? The R package LogFSM described in secction 2.8.5 can be used to analyze log data provided by the different deployment software tools (see chapter 7).

Process Indicators: Information about emotional, motivational, and cognitive processes during assessment processing may be contained in log data. Their interpretation in the context of assessments is guided by psychometric concepts such as validity (e.g., Goldhammer et al. 2021) and scientific principles such as reproducibility, replicability, and (independent) replication of empirical research.

Raw log events are platform-specific and are not suitable for defining indicators since if an assessment is re-implemented in a different technical platform, it cannot be assumed that the Raw Log Events will arise identically. Accordingly, the definition of process indicators that can become the subject of empirical validation is based on low-level features (Actions and States), where Actions also include Contextualized Log Events.

In this context, Process Indicators are aggregates of Low-Level Features (e.g., the number of occurrences of a particular Action or the aggregated time in a particular State), meaning values of person-level variables that can be derived from low-level features, and for whose interpretation theoretical arguments (e.g., in the sense of evidence identification) and empirical support can be collected. Psychometric models (e.g., measurement models) can be used, for instance, to investigate the within-person relationship of process indicators across different items or tasks and their relationship to outcome measures.

How to do this with the CBA ItemBuilder? Low-level features extracted with LogFSM can be used to compute Process Indicators in R.

2.8.2 Item Designs and Interpretation of Log Data

In line with the terminology described in the previous section, Kroehne and Goldhammer (2018) describe a framework for analyzing log data. The core of this framework is the decomposition of the task processing into sections (called States), which can be theoretically described regarding an assessment framework.

The presentation of an assessment component (i.e., an item or unit, for example) always begins in a designated start state. Raw Log Events collected by an assessment platform can be used to mark the transition from one state to another state. As described above, Raw Log Events can also indicate specific Contextualized Log Events (i.e., Actions with a task-related interpretation). This way, two identical Raw Log Events can be interpreted differently depending on the current state (called Contextual Dependency of Log Events, see Kroehne and Goldhammer in Press).

Decomposition of Test-Taking Processes: The theoretical framework can also be used to describe item designs with respect to the interpretability of log data. For this purpose, it is helpful first to consider what creates States. According to Kroehne and Goldhammer (2018) the meaning of States is constituted by combining the displayed information (i.e., what is presented to test-takers on screen) with the possibilities to interact (i.e., what can test-taker do and how can test-taker interact with the content).

Suppose the presented information changes (i.e., a page change or a modification of the visible area of a scrollable page) or the opportunities change how the test-taker can interact with the assessment content. In that case, it may be helpful to describe the test-taking process using two different States. A log event (or events) can mark the transition between the old and new state (e.g., a page-change-event or scroll-event). If the interpretation of the two states differs meaningfully, then the interpretation of the involved log event(s) follows from the difference between the two states.

Log events can, for example, represent the selection of a response from predefined response options (i.e., events that can be categorized as answer-change-event). Suppose a State contains the view of an item stem, question, and the possibility to respond, for instance, by selecting a radio button. In that case, these answer-change-events can distinguish two states, BEFORE_RESPONDING and AFTER_FIRST_RESPONSE. While the assessment is ongoing, meaning while the item is on screen and the test-taker still has the opportunity to change the response, the state AFTER_FIRST_RESPONSE cannot be further decomposed into WHILE_RESPONDING (the time between the first and the last answer-change event) and AFTER_RESPONDING, as it is not yet decided whether the test-taker will select an answer only once (meaning, only one answer-change-event), or the test-taker will change to a different answer by clicking on different radio button. However, the situation will be different if log data from concluded assessments are analyzed. Either way, the interpretation of the state BEFORE_RESPONDING rests on the premise that the item design allows assigning this time component to one question. This is only possible with assumptions when multiple questions are presented in parallel on one screen.

Process Indicators for Item Analysis: Based on the decomposition of test-taking processes into individual sections (i.e., States), which are subdivided by log events, an in-depth item analysis can be performed, for example. An example of using frequency-based aggregates of low-level features (e.g., number of Actions meaning events tagged as answer-change events) and low-level features within states (e.g., number of visits of an item after selecting a final response), as well as time-based aggregates (e.g., total time after selecting the final response), can be found in Lahza, Smith, and Khosravi (2022).

States with Dedicated Meaning: Theory-driven created, interpretable process indicators are also possible if dedicated States can be crafted with a specific interpretation regarding the measured construct. An example of this idea can be found at Hahnel et al. (2019), based on making additional information necessary for solving a task of the task solution visible only after a test-taker interaction. The additional information about the source of a document is placed on a dialog page, and buttons that create log events need to be clicked to open and close the dialog page.

A similar concept underlies the analysis of navigation behavior in hypertext reading when relevant pages (i.e., States reconstructed based on navigation behavior, on which information essential for the task solution is presented) are distinguished from irrelevant page visits (see e.g. Naumann 2015).

2.8.3 Completeness of Log-Data

Which Raw Log Events are provided by an assessment platform depends on the respective programming, and Contextualized Log Events are each related to concrete item content. Hence, both forms are not suitable to describe whether the programming of a computer-based assessment provides all (relevant) log events. Kroehne and Goldhammer (2018), therefore, describe different completeness conditions.

How to do this with the CBA ItemBuilder? The log data collected with the CBA ItemBuilder can be insepcted live during a Preview of the assessment using the Trace Debug Window (see section 1.6).

Log Data versus Result Data: The starting point for differentiating different completeness conditions of log data is the review of the relation between log data and result data of a (computer-based) assessment. The result data contain for each item the raw responses (for instance, the text entered into text fields and the selection of choice elements such as radio buttons and checkboxes), and if implemented within the assessment platform, the scored item responses (see section 2.5.1). Although result data can be missing coded (see section 2.5.2) already when provided by the assessment software, we ignore missing value coding for the following explanation.

Response completeness: Suppose a result variable that contains the final selection of, for instance, a group of radio buttons (e.g., A, B and C). The value for this variable is an identifier for the finally selected radio button or a transformation of this identifier to a numeric value using a simple mapping (e.g., 1=A, 2=B, and 3=C). Log data of the intuitive type answer-change are generated each time the selection of the radio button group is changed. If A is selected first, followed by a selection of C, two answer-change log events are expected, one for the first selection (A) and one for the second selection (C). Taking both log events together in the correct order allows us to reconstruct the final selection and, thus, the value of the result variable (C or 3). Hence, if all answer-change events are collected, the result data can be re-constructed form the log data. If this is possible, all answer-change events are logged (whatever technique is used to collect the responses), and log data are called response complete. To achieve this property, answer-change events needs to be ordered by timestamp. However, we do not need real time measures, it is sufficient that the order of log events is maintained by the logging.

How to do this with the CBA ItemBuilder? Although the collection of log data is well developed for the CBA ItemBuilder, scoring defined within the CBA ItemBuilder tasks is only evaluated when test-taker end the task (using a runtime command, see section 3.12). Accordingly, only the raw input can be reconstructed from log events provided by the CBA ItemBuilder runtime in the current version and result data and log data are stored in parallel. Note, however, that using the TaskPlayer API (see section 7.7) deployment software that uses the CBA ItemBuilder runtime can request scoring data at any time (and multiple times).

Progress-completeness: If the answer-change events can not only be sorted, but all answer changes are logged immediately with sufficient accuracy, then log data can also be Progress Complete. To check this property, it must be ensured that the result variables can be determined from the log events at any time (and not only after an assessment component, i.e., an item or a unit, has ended). This property can be easily illustrated through text input. If the changes in a text input field are only logged when the input focus changes, then Progress Completeness is not satisfied because the values of the result variables can be reconstructed from the answer-change events only at the times when the test-taker leaves the input field. To achieve Progress Completeness all text changes (e.g., in connection with the key-down or key-up-events) would have to be logged.

State‑completeness: The completeness conditions described so far are agnostic regarding the planned use of log data. This is different for the condition described as State Completeness. Consider a use case in which we want to replicate findings from a specific study that used a particular set of States (or specific Actions or Contextualized Log Events). To verify that this replication will be possible using the assessment software under consideration, State Completeness needs to be checked regarding this differentiation. For that purpose, all transitions between distinguished States need to be identified with available Raw Log Events. Note that the Raw Log Events used for the re-implementation can be different from the original implementation as long as all required transitions (as well as Actions and Contextualized Log Events) can be recognized from the log data with specific Raw Log Events that are provided by the new platform.

Replay‑completeness: Verifying log data with respect to State Completeness is especially helpful if a concrete set of States and Actions (or Contextualized Log Events) is known. If one wants to ensure that log data is as complete as possible so that all changes based on user interactions and internal state changes, such as timers, etc., are included in the log data, then Replay Completeness is helpful. Replay Completeness is fulfilled when a screencast (like a video)14 can be recreated from the collected log data. Figure 2.22 provides an example.

[image: Item illustrating the replay feature (work in progress) ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IllustrateReplayFeatureDemo/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IllustrateReplayFeatureDemo.zip)).]

FIGURE 2.22: Item illustrating the replay feature (work in progress) (html|ib).

How to do this with the CBA ItemBuilder? The development of the CBA ItemBuilder starting with Version 9.8 aims to achive Replay Completeness. Note, that in the current preview the pointing device (i.e., the mouse pointer) is not included and, hence, invisible for the replay.

An understanding and objective analysis of the completeness of log data (i.e., what interactions and system state changes can be inferred from the log event data) is also crucial for making valid statements about Idle Times and for interpreting time differences in log data analyzed as time-stamped action sequences (e.g., Ulitzsch, He, and Pohl 2022).

2.8.4 Data Formats for Log Data

Log data collection often requires specific programming and presents additional requirements that must be specified, implemented, and tested (see, for instance, section 8.4 for details about Testing of CBA projects).

Even though based on the definition of log events described above (see section 2.8.1), the structure of the event data can be derived, the data of software developers in concrete assessment software tools do not necessarily have to be stored in log files in a structured way. Often log data is stored mixed with other data (including paradata and metadata), and functional requirements (regarding presenting assessment content and collecting final responses) might be prioritized for the assessment software in comparison to a transparent separation of different data forms.

For various reasons, data from an assessment platform may initially be stored in a preliminary (and proprietary) data format, and additional steps of data post-processing (see section 8.6 may be necessary to extract the Raw Log Event data (or Contextualized Log Events). The data formats for log event data described briefly below must therefore be generated from the data from the preliminary data formats used by particular assessment software. It does not matter whether the assessment software stores the data internally in a relational or document-based database or whether it is based on the generic markup language XML or the JSON serialization commonly used in web contexts.

Flat and Sparse Log Data Table: Starting from a long-format with one event per line, the storage of log data in the form of a one big Flat and Sparse Log Data Table (FSLDT) is possible (Kroehne In Preperation). As long as the minimal conditions described above (see section 2.8.1) are fulfilled (i.e., each log event is assigned to a person, has an event type or name, and a timestamp), the corresponding columns in the FSLDT are filled in for each line. Suppose many different event types that contain different required or optional event-specific data. In that case, the FSLDT contains many missing values and can become large and messy. Moreover, additional specifications are required for non-atomic event-specific data (i.e., to handle nesting, see Kroehne In Preperation).

Universal Log Format: Log data can be stored clearly and efficiently using simple relational database concepts. For this purpose, the data is stored in tables per event type. Each of these data tables thus contains fewer missing values, and the semantics and data types of the event-specific attributes (i.e., columns) can be defined and documented (see section 8.7). Missing values only occur for optional event-specific attributes, and additional specifications can be used to handle nested data types in the form of additional tables.

The individual tables per event type can be combined and sorted again based on the time stamps to create an FSLDT. The individual tables can be saved as data sets in the common data set formats (CSV, Stata, SPSS, …) and thus easily managed by research data centers since standard procedures (e.g., for the exchange of identifiers, see section 8.6) can also be applied.

eXtensible Event Stream (XES): Developed to achieve interoperability for archiving event logs data, the IEEE 1849-2016 XES Standard is the most attractive format for storing log data in a way that different tools can read. As described in Kroehne (In Preperation), the XES format combines information about the log data (i.e., how the data are stored) and the data, making this standard very flexible and valuable for log data from computer-based assessments. However, although the data are stored in XML format, researchers unfamiliar with the XES standard cannot read or verify the data without additional tools.

How to do this with the CBA ItemBuilder? When post-processing data collected with CBA ItemBuilder content with the R package LogFSM (see secction 2.8.5), log data are processed and provided as (compressed) XES file and in the Universal Log Format (in either Stata, SPSS or CSV tables). When reading and merging all event-specific tables from a ZIP archive containing data in the Universal Log Format, a Flat and Sparse Log Data Table can be created in R.

Learning Analytics: Log data gathered in assessment can also be described and stored using the concepts developed in the domain of learning analytics (for instance, the experience API statements, xAPI). The test-taker, required for log events after data preparation as person identifier corresponds to the actor in an xAPI statement. The event name (if necessary in combination with one or multiple event-specific attributes) can create a verb (e.g., clicked). The object is specified by the instrument identifier, and when necessary, further specified by event-specific attributes. Finally, context information of an xAPI statement can refer to access-related paradata (e.g., the location where an assessment takes place) or to metadata or linked data (such as the instructor of a course, in which an assessment is conducted).

Note that other standards (such as IMS Caliper and Hao, Shu, and von Davier 2015) exist that might be worse to consider.

2.8.5 Software Tools

The development of generic tools for analyzing log data from computer-based assessments is still in its infancy. Often, log data are only analyzed in a study-specific way, for example, by creating specific programs for analysis (cf. PIAAC Log Analyzer, Goldhammer, Hahnel, and Kroehne 2020).

LogFSM: A generic tool for analyzing log data based on algorithmic processing of log events (Raw Log Events or Contextualized Log Events) using finite-state machines is the R package LogFSM, which implements the framework for feature extraction suggested by Kroehne and Goldhammer (2018). Finite-State Machines (FSM, e.g., Alagar and Periyasamy 2011) are used, for instance, in the CBA ItemBuilder to implement dynamic interactive items (see section 4.4, and Rölke 2012; Neubert et al. 2015). Similar principles are also useful for the analysis of log file data (e.g., Kroehne and Goldhammer 2018).

Further R Packages: Additional R packages for analyzing log data include, for instance, LOGAN (Reis Costa and Leoncio 2019) / LOGANTree, ProcData (Tang et al. 2021), and TraMineR (Gabadinho et al. 2011).

2.9 Feedback

Computerized assessment allows for a variety of different forms of feedback. Feedback can relate to the answering process and the answers themselves.

2.9.1 Feedback during the Assessment

Different feedback forms can also be distinguished, either always displayed during the assessment or retrieved optionally. Some of the basic options are briefly described in this section.

Real-Time Feedback while Responding: Interactive items can be designed so that the cognitive operations for completing a task change as part of the response format. This type of feedback during test-taking is illustrated in the item in Figure 2.23 for an example matrices task. In this example, once the answer is chosen, it is already presented in the context of the stimulus, supporting verifying the submitted answer without explicitly providing feedback about task correctness.

[image: Item in the style of a Raven's Progressive Matrices test ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/RavenDragAndDropExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/RavenDragAndDropExample.zip)).]

FIGURE 2.23: Item in the style of a Raven’s Progressive Matrices test (html|ib).

Real-Time Feedback about Results: Closed response formats or automatically scored items allow explicit feedback about the results provided either immediately or delayed (Shute 2008). As discussed in van der Kleij et al. (2012), the operationalization of immediately (e.g., feedback given during the completion of an item) and delayed (e.g., feedback given directly after completion of all the items in the assessment) differs across research. Different types of feedback are investigated and used in practice and real-time performance feedback is considered (e.g., scaffolding feedback, Finn and Metcalfe 2010), in particular, attractive for formative assessments (DiCerbo, Lai, and Matthew 2020).

[image: Item illustrating result feedback ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ResultFeedbackExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ResultFeedbackExample.zip)).]

FIGURE 2.24: Item illustrating result feedback (html|ib).

Feedback about (Remaining) Time: Especially when moderate time limits are used for larger test sections, it is helpful to integrate feedback about the remaining time into the items to make the information available to all test takers in a comparable (standardized) form.

The feedback can be implemented by displaying the remaining time (numerically) or by using a graphical visualization that visualizes the remaining time only roughly (in order not to create unnecessary time pressure).

Alternatively, as illustrated in the item in Figure 6.37, feedback on the remaining time can be provided, for example, at the item level by displaying a hint if an item still needs to be processed after a predefined time threshold.

Feedback about Task Progress: In addition to the remaining time, it is also helpful to provide feedback on overall test completion in computer-based assessments where progress cannot be inferred from the printed test booklet, as shown in Figure 2.25.

[image: Item illustrating task progress feedback ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TaskProgressExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TaskProgressExample.zip)).]

FIGURE 2.25: Item illustrating task progress feedback (html|ib).

Feedback on Task Completion: The feedback about the processing status can also distinguish between visited pages and answered items. In that case, it is also possible to read how many tasks will still have to be processed from a progress display. A simple example is included in Figure 2.25. The graphical design can be more elaborate if multiple items are combined on individual pages.

Feedback about Navigation: As shown already in Figure 2.13, as soon as test-takers can not navigate back after leaving a section, unit, or page, a feedback dialogue or popup message is often used to inform the test-taker about the consequence of continuing.

Missing Value Feedback: The number of unfinished tasks can be displayed continuously or when leaving a unit. Suppose test takers cannot navigate back to a previous section. In that case, it makes sense to display a warning that can be designed differently for the case that all items have been answered (feedback about navigation) or that items still need to be answered (missing value feedback).

How to do this with the CBA ItemBuilder? The CBA ItemBuilders capabilities for the dynamic content can be used within tasks to realize the different feedback possibilities during the assessments (see chapter 4).

Rapid Guessing Feedback: Feedback about test-taking behavior, such as rapid guessing, can be provided to test-takers, either automatically [see, e.g., N.N.] or by test administrators (see, e.g., Wise, Kuhfeld, and Soland 2019).

Feedback on Consistency: Feedback about responding (too) quickly or unexpectedly fast is just one of many possibilities. If the software allows, for instance, person-fit measures can also be used to give feedback about inconsistent answers.

2.9.2 Feedback after the Assessment

Once data collection is completed for a single test-taker, there are multiple opportunities for further use of data for feedback purposes. Steps that can be relevant for creating feedback after an assessment include the scoring of responses (see section 2.5.1) and the ability estimation (using calibrated items, see sections 2.5.4 and 2.5.5).

Technical Platform for IRT-Methods: When an IRT model is used to model the measured construct, appropriate psychometric algorithms must be used for ability estimation, using pre-calibrated item parameters (i.e., the number of correct responses is not enough if the raw score is not a sufficient statistic). The necessary functions for ability estimation with various IRT models are freely available within software packages for data analysis (for instance, in the form of the R package TAM, Alexander Robitzsch, Kiefer, and Wu 2022). In order to use these functions also for operational computer-based assessments, the corresponding platform must be available (e.g., by using R with the help of the environments ShinyProxy, OpenCPU or the R package Plumbr), or the delivery environment must provide the required IRT functions.

Technical Platform for Report Generation: A technical solution for the automatic creation of feedback is also necessary to create texts and, if necessary, graphics and combine them into HTML, PDF, or other text documents [e.g., R and the package kntir, Xie (2015); see section 7.3.5 for an example].

Technical Inclusion of Process Indicators: In addition to outcome variables, process indicators representing aggregations of Low-Level Features that can be extracted from log data using algorithms (see section 2.8) can be helpful in generating feedback. A technical platform is also required for this necessary analysis of the log data, in which, for example, the R package LogFSM (see section 2.8.5) can be integrated.

How to do this with the CBA ItemBuilder? The derivation of result variables for feedback after an assessment can be prepared by using the scoring functions of the CBA ItemBuilder (see chapter 5). However, parts of the required technical platform must be provided by the deployment software (see chapter 7).

2.10 Item and Test Security

Computer-based testing is also connected in different ways with the concept of item and test security.

2.10.1 Protection of Items and Tests

Test security is first of all related to the protection of item content, of particular importance for high-stake assessments or for low-stakes assessments that aim to measure trends by using so-called link items. The core idea is that test instruments should only be accessible to a limited group of users to protect item contents from becoming known.

2.10.2 Secure Test Deployment

Whether and in what way item contents can be made known depends mainly on the type of test delivery. If, for example, a proctor is present on-site during a test session and the test is carried out in a so-called kiosk mode (see section 7.2.3), then the proctor and the software can help to manage the possibility of uncontrolled dissemination of item content.

From a diagnostic perspective, test security also has a second meaning: An assessment platform should implement a certain degree of restrictions so that the assessment can be carried out with as little disruption as possible. Since a certain degree is difficult to verify from an IT perspective, we work with the following operational definition of operational test security of assessments in terms of usability for diagnostic purposes:

No unintentional mishandling of the assessment platform or any unintended test-taker behavior should lead to an interruption of the assessment.

The usability of computer-based assessments and the protection of items and tests are related, as both aim at restricting the possibilities of how the test-takers can interact with the test delivery while answering items and working on assigned tasks. The following examples illustrate for web-based deployments how a computer-based assessment can be challenged regarding the usability (and related to test security):

	Accidental closing of the entire browser can interrupt the assessment or result in losing data.

	Navigation using browser Back-, and Forward- buttons (instead of the buttons within the assessment content) might interrupt the assessment.

	Drag and drop operations on content that requires scrolling to be completely visible can occur unintendedly, for instance, if test-taker can reduce the size of a browser window.

	The attempt to open an assessment in a second window or tab can lead to unwanted interruptions or, in the worst case, inconsistencies in the data.

Thus, the question of the delivery of computer-based assessments can have a significant effect on the validity of measurements. Collecting log data, for instance, for so-called off-task behavior, can help identify and ultimately quantify the problem. However, interpreting scores at the individual level may be challenging or, analogous to disengaged response behavior and rapid guessing responses, impossible.

2.11 Design Principles of the CBA ItemBuilder

2.11.1 Content Experts as Item Developers

Creating good assessment items depends primarily on creating task contexts in which understanding can be applied and, where appropriate, knowledge can be demonstrated. As general as the concepts of computer-based testing and psychometric assessments are, as specific are the application areas and domains in which diagnostic questions are to be answered. The CBA ItemBuilder is therefore designed in such a way that content experts can use the software to create, test, and ultimately use items for computer-based assessments. The technical platform should support a wide range of possibilities of more innovative, technology-enhanced item formats, which is why the CBA ItemBuilder goes beyond the simple, although standardized item formats of IMS QTI and allows the design of multi-page interactive items.

2.11.2 Model-based Representation

The CBA ItemBuilder uses a component model to enable the graphical design of assessment contents. Starting from individual pages, the position of elements and their properties are defined with the help of a graphical editor. In the current version of the CBA ItemBuilder, this graphical editor is a program that can be installed on the computer (see section 1.1). With this program the abstract component model becomes the basis for the creation of assessment content. The visual part of the component model comprises pages (of different page type, see section 3.4), and the graphical Page Editor allows to add components from the so-called Palette to the pages. The components have various properties, such as the position (in pixels X and Y), the size (in pixel Width and Height) and many more (depending on the type of a particular component). The component model is stored within the item definition (in so-called Project Files) and used to generate source code (or a configuration file that can be used with a particular piece of software, called TaskPlayer API) that is used to use CBA ItemBuilder content in assessments.

2.11.3 Separation of Layout and Logic

The model-based representation of the assessment contents (using the component model as describe above), as implemented in the CBA ItemBuilder, is also the basis for a possible long-term archiving strategy of computer-based tests (see section 8.7.3). The basic idea here is that the runetime code can be updated from the model if a newer version of the CBA ItemBuilder can open project files of previous versions (see 3.2.1).

2.11.4 Containers and Nesting

Containers define which components can be added as child elements (i.e., only components of a particular type can be nested within containers of a particular type). Moreover, using the concept of containers, the order in which components are displayed (the so-called Z-Order, the sequence in which components are rendered on top of each other if they overlap) is defined for pages created with the CBA ItemBuilder. Containers are always rendered below their child elements. If a component is a container, the Z-Order of its nested components is defined by the order of the components within the container (see section 6.8.5 for details on overlapping components). Hence, the order in which components are added (i.e., the order within the Component Edit view) defines the order in which components are displayed on top of each other during runtime (i.e., in the Preview and when assessment components created with the CBA ItemBuilder are used in assessments).

	“Question and Test Interoperability (QTI): Implementation Guide” (2022)↩︎

	Note that also other components can be used to implement choice interactions, see section 3.9.7 and section 3.9.10 for examples.↩︎

	The shuffle-option is, if required, possible only with the help of dynamic components of the CBA ItemBuilder, as described in chapter 4 (see section 6.4.10 for an example).↩︎

	CBA ItemBuilder allows to include advanced text editors as ExternalPageFrame, if required (see section 6.6.2).↩︎

	https://www.imsglobal.org/question/qtiv2p2/imsqti_v2p2_impl.html#h.lkeh7elhvt2n↩︎

	http://www.imsglobal.org/question/qtiv2p2/imsqti_v2p2_impl.html#3.1↩︎

	See the QTI standard for the End Attempt interaction.↩︎

	“Planning for TBAs should include the design of tutorials for navigation of test elements.”(International Test Commission and Association of Test Publishers 2022)↩︎

	The content for this example is taken from Baghaei and Tabatabaee (2015)↩︎

	The example item NavigationExampleStimulusQuestion.zip is created using simple pages (see section 3.4.1), components of type PageArea (see section 3.5.4) and a navigation implemented completely in the finite-state machine (see section 4.4).↩︎

	While time limits within assessment components created with the CBA ItemBuilder can be defined directly with Timed Events using the Finite-State Machine as part of item implementation (see section 4.4.3, time limits that are to work across different Tasks must be implemented with the test deployment software (see section 7.2.8).↩︎

	The QTI 3.0 Specification refers to a list or batch of one or more items from the Item Pool as Item Stage.↩︎

	The general structure of information used to initialize CAT algorithms is described, for instance in the QTI CAT Specification using key-value pairs.↩︎

	Note that develops the the Text Replay suggested by Gobert et al. (2013) further.↩︎

3 Designing Items Using Static Content

The following two chapters describe creating new items with the CBA ItemBuilder. Static content (chapter 3) and dynamic content (chapter 4) are introduced separately, which helps describe the CBA ItemBuilder’s functional scope. This separation will become less critical for practical work with the authoring tool since the two areas are deeply integrated.

In this chapter, the features and topics are introduced in sections 3.1-3.7 in the order that follows the steps required for item implementation, and cross-references acknowledge the relationships between the various topics. The introduction is followed by a second part in sections 3.8-3.15 that systematically introduces all components authors can use to design assessment content.1

3.1 Overview of the User Interface

The CBA ItemBuilder is built based on an open-source development environment (Eclipse). Hence, working with the CBA ItemBuilder differs from using modern apps and web-based tools. The user interface is first described in detail for all users to find their way around quickly.

Tip: Using the CBA ItemBuilder requires the context menu, opened via the right mouse button.

3.1.1 Top: Main Menu and Toolbar

After starting the CBA ItemBuilder, a program window opens with a structure as shown in Figure 3.1. The arrangement of the different areas can be adjusted and configured according to individual needs and preferences (see section 6.8.1 for details). The different areas of the user interface have particular meanings, described in the following, as shown in the default configuration.

[image: *Main Menu*, *Toolbar* and left area of the CBA ItemBuilder user interface (*Project View*, *Embedded HTML Explorer*, *Renderer* and below the *Component Edit*).]

FIGURE 3.1: Main Menu, Toolbar and left area of the CBA ItemBuilder user interface (Project View, Embedded HTML Explorer, Renderer and below the Component Edit).

The CBA ItemBuilder can be operated via a Main Menu, located in the top of the application (see File, Edit, … Help in Figure 3.1). Essential commands are also directly accessible with icons in the Toolbar, below the Main Menu.2

Tip: The available entries in the Main Menu of the CBA ItemBuilder are context-sensitive (e.g., selected entries are only available if a tab with a certain content is displayed in the Page Editor, see section 3.1.3).

3.1.2 Left: Project View, Component Edit, Embedded HTML Explorer and Design Pages with Basic Components

In the default configuration, the left area of the CBA ItemBuilder contains the following four tabs (see Figure 3.1) with specific functions as described in the following: The Project View, the Component Edit, the Embedded HTML Explorer, and the internal Rendering. It is possible to switch between the tabs at any time, and the tabs can also be un-docked and re-sized (see section 6.8.1).

Project View: The Project View is organized as a tree and is empty by default. As soon as a project is created (see section 3.2.1, the Project View shows the current project’s name as the root element, which is also shown in the name of the main window. When a project contains pages, the pages are listed under the root element. Right-click on the root element (i.e., the project name) or a page (i.e., one of the elements in the tree) opens different context menus, as shown in Figure 3.2.

[image: *Context Menu* in the *Project View* clicked on the root (left) and on a page (right)]

FIGURE 3.2: Context Menu in the Project View clicked on the root (left) and on a page (right)

Entries in the tree of the Project View represent pages in the current project. The order of pages can be sorted with the buttons and .3

The context menu of the Project View clicked on the root (i.e., right-click on the project name) allows to create new pages (see Add new page in the left part of Figure 3.2). Double-click a page in the Project View (or right-click a page name and select Open Page) allows to open a page in the Page Editor. The remaining functions accessible using the context-menu of the Project Name (right-click the root element in the Project View) and the Pages (right-click a page name in the Project View) will be described in context of the related features of the CBA ItemBuilder.

The Project View provides two different context menus, namely a menu with functions to the current project (available when the project name, i.e., the root element is right-clicked) and a menu with functions to a selected page (available when a page in the Project View is right-clicked).

Component Edit: Beyond the Project View that is open by default, the left area of the CBA ItemBuilder’s user interface contains three more tabs. The first tab is headed with Component Edit. After opening a page in the Page Editor the Component Edit lists all components of that page. The Component Edit view is essential for selecting components in the graphical Page Editor, for instance, when components are placed on each other or are too small to be easily selected by point-and-click.

The Component Edit view allows inspecting and selecting elements of the current page in the Page Editor (see section 3.7.3 for details).

CBA ItemBuilder Version 10.0 will support changing the order of components in the Component Edit view.

Embedded HTML Explorer: The CBA ItemBuilder is designed as an open tool for researchers to create interactive assessment components (items, instructions, etc.). Content that can be created with the core components presented in this chapter is defined independently of concrete programming technique (see detailed about the model-based representation in section 2.11.2). However, CBA ItemBuilder items can be extended with HTML5/JavaScriopt content. If features are not available using the core components or fragments are already available or programmed for browser-based environments, HTML and JavaScript can also be used along with core components. For this purpose, existing material can be imported as files and folders in the CBA ItemBuilder Project Files using the Embedded HTML Explorer (see section 3.14.2).

Rendering: The Drawing Area in the Page Editor of the CBA ItemBuilder (see section 3.1.3) is not What you see is what you get. To verify the final layout of a page, the internal Rendering (or the full Preview, see section 1.4) can be used. The Rendering tab in the left part of the CBA ItemBuilder is preferred since this preview of the currently opened page of the Page Editor is updated automatically if major changes are applied to the page or the button is pressed (see section 3.7.1 for details). The Rendering tab is empty, of no page is opened.

The tab Rendering provides an instant feedback about the page layout without requiring an external Browser. The tab can be undocked (and docked to the left, middle and righ part of the user-interface to fit the need of item authors, see section 6.8.1).

The tabs on the left side can be minimized and hidden in the margin with the icon Minimize. The icon Maximize enlarges the area by minimizing all other areas. The icon Restore returns to the original view.

3.1.3 Middle: Page Editor and Other Editor-Tabs

The middle region is the main working area of the CBA ItemBuilder. This area is structured in the form of tabs, each of which is opened to edit specific content (i.e., a Page Editor to edit pages, an HTML Text Editor to edit components of type HTMLTextField, etc.). Changes to individual parts of the current Project Files made in such a tab must typically be applied, before other parts of the CBA ItemBuilder can consistently work with the changes. The CBA ItemBuilder indicates unchanged contents with a small * in the tab name.

Page Editor and Palette: The core component for designing pages is the Page Editor. The Page Editor is opened for a particular page by double-clicking on the existing page in the Project View. By clicking on the small icon on the right , the context-sensitive Palette is displayed (see Panel E in Figure 3.3).

[image: Five steps for opening a newly created page in the *Page Editor* and open the *Palette*.]

FIGURE 3.3: Five steps for opening a newly created page in the Page Editor and open the Palette.

If not requested differently, new pages are by default created with Frame and Panel (see section 3.4).The Palette allows selecting components that can be added in the Page Editor in the current context, meaning within the currently selected component. After creating the first page, the CBA ItemBuilder, the Page Editor is not yet open (see A in Figure 3.3). To open the page, double-click the page name in the Project View or use the context menu (right-click on the page name, see B in Figure 3.3, and select Open page). After opening the page the Page Editor appears as a new tab, showing the page with Frame and Panelin the Drawing Area (see D in Figure 3.3). Clicking on the small icon opens the context-sensitive Palette (see D in Figure 3.3). However, as long as no component is selected, the Palette contains only the Framecomponent. To see all components in the Palette that can be added inside of components of type Panel, click the Panel that is by default created when new pages are added (see E in Figure 3.3).

The available components for the current selection in the Page Editor are displayed in the context-sensitive Palette.

The different components possible in the current context are shown in the Palette (according to the currently selected component in the Drawing Area). To insert a new component, select that particular component in the Palette and then click and drag to place it in the parent component in the Page Editor (see section 3.7 for detailed instructions).

Changes in the Page Editor are applied when the Page Editor is closed via the small cross next to the page name in the tab title and the Save Resource dialog is confirmed with OK. Also, the saving of the entire Project Files takes over the change one all Page Editors.

Changes in the Page Editor and other editor tabs must be applied so that the CBA ItemBuilder user interface is always consistent with the contents of the current Project File. A small * in the title bar marks changes that have not yet been applied.

Other Editor Tabs: The CBA ItemBuilder’s main area is also used for other editors. These include editors for formatting text (for components of type HTMLTextField see section 3.8.2, and for components of type TextField, see section 3.8.3). In addition, the Resource Browser (see section 3.10.1) for importing images and media files into Project Files is also shown in this area. Editors for editing dynamic content (see chapter 4) and defining the scoring items (see chapter 5) are also presented in this section. This includes syntax editors for defining Hit Conditions (see section 5.3.2), Task Initialization (see section 4.5), Conditional Links (see section 4.3) and for defining State Machine Rules (see section 4.4.4). Finally, the definition of States and Variables is also conducted in the State Machine Tree View, shown in this part of the CBA ItemBuilder user interface (see section 4.4.1).

Zoom: For the graphical editing of assessment components (i.e., for the design of pages in the Page Editor), the CBA ItemBuilder provides a zoom function. A zoom factor can be entered or selected in the toolbar (). This zoom factor only influences the display in the Page Editor during the creation of the pages and has no influence on the final display in the Preview or the test delivery.4 Page Editors for multiple pages can be opened simultaneously.

3.1.4 Right: Properties, Tasks, Variables, Value Maps and Clipboard View

The right part of the CBA ItemBuilder window also has content that in the default configuration always displayed there, and also this right area is organized with the help of tabs. A tab appears if one of the following editors are requested: Properties view, Tasks, Variables or Value Maps. Changes in the editor are saved either when the project is saved (see section 3.2.1) or when the tab is closed.

Properties view: A central part of the user interface for defining components in the Page Editor of the CBA ItemBuilder is the so-called Properties view. In this tabular display, individual properties of the component currently selected in the Page Editor can be specified and modified. The Properties view is hidden by default. The Properties view can be shown with the entry Show Properties View from the Context Menu of components in the Page Editor

To specify detailed Properties of components, the Properties view can be opened via the context menu and the entry Show Properties View.

Once the Properties view is opened in the right area of the CBA ItemBuilder, it shows the properties of the currently selected component in the Page Editor. The headline of the Properties view always show the components’ type. The component selection in Figure 3.4 is, for instance, of type Panel (as can be seen from the headline:).

To use the Page Editor it is essential to know what type a selected component in the Drawing Area is. The type is automatically displayed in the Properties view and the Component Edit view (see section 3.7.3 for details).

[image: *Properties* view of a selected component of type `Panel`.]

FIGURE 3.4: Properties view of a selected component of type Panel.

The Properties view is divided into sections (Appearance, Component Interaction, Display, …) and has two tab-pages (Core and Appearance). Most properties are shown on the tab Core. Which properties can be changed depends on the component’s type.

Section Position in the Properties View: All components that can be freely placed in the Page Editor have a section Position in the Properties view. The section Positions allows the Width and Height as well as the X- and Y-coordinate to be defined exactly. The upper-left corner serves as the origin with the coordinates X=0 and Y=0.

Tab Appearance in the Properties View: For components that display text (except for components TextField and HTMLTextField, which support different formatted text, see section 3.8), font name, font size and font color (), bold font (), italic font (), and underlined font () can be configured in the Appearance tab of the Properties view (see Figure 3.5). To facilitate the use of consistent fonts and to narrow the fonts used in web deliveries, the available fonts can be restricted (see section 6.8.2).

[image: *Properties* view showing the tab *Appearance*.]

FIGURE 3.5: Properties view showing the tab Appearance.

For all components the fill color () is only applied, if the component is not configured to be Is Transparent=true in the section Display of the Properties view. Finally, for all components the border color () can be defined. However, a border is only shown if the property Border Width in the section Display of the Properties view is defined (default is 00).

Background color is only used for components that are not transparent and line color is only used, if the Border Width for a component is a positive number larger than zero.

Section Identification in the Properties View: The section Identification should be mentioned, which is important for the creation of assessment components with the CBA ItemBuilder. As described in detail in section 3.7.4, components required for scoring or dynamic parts must be named with a unique UserDefinedId. For that purpose, a string literal can be entered as value of the property UserDefinedId.

Rulers & Grid in the Properties View: The CBA ItemBuilder can align components in the Page Editor using a grid. Settings for spacing and visibility of the grid can be made using the Properties view when the Page is selected (see Figure 3.6). To select the Page, open the Page and click outside of the Frame in the Page Editor.

[image: *Properties* view shows *Rules & Grid* if the `Page` is selected.]

FIGURE 3.6: Properties view shows Rules & Grid if the Page is selected.

Editing the Rulers & Grid options in the Properties view is only possible, if a page is open and the page itself (and no component) is selected in the Page Editor.5

To minimize the need for entering exact coordinates when designing items, it is recommended to activate the Snap To Grid and Snap To Shape functions an to define a meaningful Grid Spacing (e.g., 10 for the Ruler Units=Pixels) or to use Auto-Layout Panels (see section 3.5.3).

Task Editor: A specific editor to define the entry points that are provided by a Project File is the Task Editor (see section 3.6). The editor is requested using the icon (or the entry Browse Task and Item Score from the Project menu) and allows also to define the scoring rules for each task (see section 5.3). The Task Editor is also displayed in the right part of the user interface (see Figure 3.7, in which the left and the middle part of the user interface are minimized).

[image: *Task* editor in the right area of the user interface.]

FIGURE 3.7: Task editor in the right area of the user interface.

Variables: Variables can be used in the logic-layer of the CBA ItemBuilder (to control the behavior of items using finite-state machines and to show dynamic content, see section 4.2). Variables can also be used to store results or information from content embedded via so-called ExternalPageFrames (see section 3.14) and variables can be used for scoring responses. As shown in Figure 3.8, variables can be declared with different Typ, need to have a Name and a (default) Value.

[image: *Variables* editor in the right area of the user interface.]

FIGURE 3.8: Variables editor in the right area of the user interface.

Value Maps: Another part of the CBA ItemBuilder’s user interface shown in Figure 3.9 is the editor for so-called Value Maps (see section 4.2.4). Value Maps are tables for translating variable values (e.g., 1, 2, 3-5, see section 4.2) into pre-defined texts and media (i.e., images, audio or video files embedded in the project, see section 4.2.4).

[image: *Value Maps* editor in the right area of the user interface.]

FIGURE 3.9: Value Maps editor in the right area of the user interface.

After defining a Value Map to translate variable values or value ranges (so-called Guards) to texts, images or audio-/video files (see section 4.2.4 for details), map-based value-displays can be embedded on pages to show the mapped resources (using MapBasedVariableDisplays, see section 4.2.5). Value maps are used, for instance, to visualize FSM-variable values, to adjust the visual presentation within items dynamically and to implement drag-and-drop response formats (see section 4.2.6).

Clipboard View: The right pane of the CBA ItemBuilder can also display the Clipboard View, enabling components and their contents to be copied and transferred within pages, between pages, and between CBA ItemBuilder Project Files (see section 3.7.2 for details).

3.2 CBA ItemBuilder Projects Files

After describing the user interface of the CBA ItemBuilder, this section turns to the content that can be created with the authoring tool. The CBA ItemBuilder uses Project Files that are plain ZIP-archives. The Project Files (with the file extension *.zip) contain the task specification, settings, pages, syntax for scoring and the finite-state machine as well as all resources (e.g., graphics, videos) used by the project. Moreover, the ZIP archives contain the generated data required for rendering the item during runtime (see section 2.11.2).

The files with assessment content that can be created and edited with the CBA ItemBuilder are ZIP archives. These must not be unpacked but can be opened directly as ZIP archives in the CBA ItemBuilder desktop application.

3.2.1 Working with Project Files

As already described in the section 1.4.1, the CBA ItemBuilder is an editor for item projects, which are stored as ZIP archives. The Project Files are not created using the Explorer. Instead, Project Files are created inside of the CBA ItemBuilder.

Creating new Projects: After the CBA ItemBuilder has been started, a project must either created, or an existing project can be opened. To start with an empty project, the menu File contains the entry New project (). To create a new project, the input of a valid project name is mandatory. The name selected here is subject to some restrictions:

The name of a project (Project Name) must not contain neither white spaces, special characters nor start with a number and using the name template for CBA ItemBuilder projects is not allowed. The name of the Project File (i.e., the ZIP archive) is by default the Project Name, but projects can be renamed (see Figure 3.10) and project files can be renamed (by changing the name of the ZIP archive outside of the CBA ItemBuilder or by using Save As...) independently.

The file name is by default identical to the Project Name. To save a Project File with a different file name, use Save as... (see section 3.2.1). To rename a project, use the entry Rename project (see Figure 3.10) in the context menu of the Project View.

[image: `Rename Project`-Dialog accessible form context menu in *Project View*.]

FIGURE 3.10: Rename Project-Dialog accessible form context menu in Project View.

Valid Project Names: If an invalid project name is entered, the CBA ItemBuilder displays the message shown in Figure 3.11 next to the -icon. In this case, change the name to comply with the regulation and confirm the dialog with OK.

[image: Warning about allowed characters for project names.]

FIGURE 3.11: Warning about allowed characters for project names.

Download Project Files: Only local files can be opened in CBA ItemBuilder. Therefore, CBA ItemBuilder Project Files must be downloaded as ZIP archives when shared over the Internet. Web browsers have a habit of opening ZIP archives after download. Make sure you open Project Files unchanged as a ZIP archive in the CBA ItemBuilder.6

Rename Projects Files (Save as...): By using Save as from the File menu and choosing a different name, the CBA ItemBuilder renames the file but not the project. Renaming the ZIP file is therefore not sufficient to rename the project (see section 3.2.1).7

Use of CBA ItemBuilder Project Files: CBA ItemBuilder project files (i.e., ZIP archives) can be used directly in delivery software (see section 7). For the definition of tests (i.e., the so-called test assembly), assessment components stored in CBA ItemBuilder project files are referenced via the project name and the entry point (Task, see section 3.6). It is recommended not to change the file names of different versions and use tools for version management instead of files with different file names (see section 8.3.2).

The configurations required at runtime (see section 2.11.2) are automatically generated with each normal save and Project Files can be used directly after saving if no error message was displayed.8

Save Projects: Saving projects is possible using either Save from the File menu (or the icon in the toolbar).

It is possible to configure the CBA ItemBuilder so that a current project is automatically saved when a Preview is requested (see settings for the CBA Preview in section 1.4.2).9

If a project containing unsaved changes is to be closed, the dialog shown in Figure 3.12 is displayed.

[image: Dialog asking to save the changes in the current project.]

FIGURE 3.12: Dialog asking to save the changes in the current project.

Inconsistent Project States: Saving CBA ItemBuilder projects shows a warning if the runtime code (i.e., the definition of the item used for deployments) is invalid. Hence, a Preview (see section 1.4 might be required, as shown in Figure 3.13.

[image: Dialog asking for a preview of the current project before saving the project file is possible.]

FIGURE 3.13: Dialog asking for a preview of the current project before saving the project file is possible.

The runtime code is created, whenever a project is previewed. However, there are selected configuration conflicts (i.e., inconsistencies) that make the creation of this runtime code and the preview impossible and therefore also prevent the saving of the items. In these cases the CBA ItemBuilder gives an error message and points to the place in the item definition which prevents saving (see Figure 3.14 for an example). This issue will occur as rare as possible in practice, if changes are regularly previewed and saved and if configuration inconsistencies (e.g. incorrect or empty UserDefinedID’s in the scoring definition) are corrected as soon as possible.

[image: Request to preview the current project before saving the project is possible.]

FIGURE 3.14: Request to preview the current project before saving the project is possible.

As shown in Figure 3.14, the CBA ItemBuilder provides a detailed description where the inconsistency is located (i.e., in this example, previewing and saving the project would be possible after changing the hit0 in task0, see chapter 5 for details about scoring). Inconsistencies can also at other locations (task definition, conditional links, value maps, finite-state machines), but the CBA ItemBuilder will always provide a useful hint (i.e., a path) where to spot the issue.

Only consistent projects can be saved. It is therefore recommended to preview and save projects regularly and thus check their consistency.

Migration and use of Multiple Versions (Details): The CBA ItemBuilder is updated at regular intervals. The software development tries to ensure that project files of previous CBA ItemBuilder versions can be used in newer software versions. For this purpose, files from older versions can be opened in the more recent CBA ItemBuilder. The internal data structures will be automatically transferred to the new data formats if necessary and possible (called Migration). Updating old items might require migrating in several steps.

When using different CBA ItemBuilder versions, it is essential to know that more recent CBA ItemBuilder versions are expected to read projects created with previous versions (and migrations should be possible), but older program versions cannot read files created with newer CBA ItemBuilder versions.

3.2.2 CBA Presentation Size

CBA ItemBuilder projects are designed for a particular size (CBA Presentation Size), defined in pixel height and width. This CBA Presentation Size is expected to fit the expected average screen size (in pixels) to avoid raster images with too low or too high resolution.

If there is no particular other cause, an CBA Presentation Size of 1024 (Width) x 768 (Height), which researchers dreamed of years ago (Bartram and Hambleton 2006), has proven to be still a good minimum size. This CBA Presentation Size is set as default in the CBA ItemBuilder.

Item Design: The CBA Presentation Size is used to define the actual size of the assessment component or at least the proportional size (i.e., the aspect ratio of width and height) used to position content in the form of components. Depending on the configuration of the deployment software, if the CBA Presentation Size is proportionally scaled and the CBA Presentation Size is the size of the content at 100% zoom-level.

The CBA Presentation Size for new items can be configured in the dialog Preferences, which can be found in the menu Utilities of the CBA ItemBuilder located in the menu entry Open preferences (see Figure 3.15). To define the item size that is used for newly created items, select the element CBA CBA Presentation Size on the left and adjust height and width of the item in pixels.10

[image: CBA ItemBuilder *Preferences* to define the *CBA Presentation Size* for new projects.]

FIGURE 3.15: CBA ItemBuilder Preferences to define the CBA Presentation Size for new projects.

For existing CBA ItemBuilder projects, the CBA Presentation Size (see section 3.6.2) is part of the Global Properties (see section 6.3 for details).11 Hence, if the preview of your item is not correctly showing the item with the correct size, the CBA Presentation Size for the project can be changed in the Global Properties. After opening an existing project, the entry Global Properties can be selected in the context menu of the Project Name in the Project View using the right mouse button as shown in the following Figure 3.16 and the CBA Presentation Size must be adjusted in the dialog that then opens:

[image: CBA ItemBuilder *Global Properties* to define the *CBA Presentation Size* for existing projects.]

FIGURE 3.16: CBA ItemBuilder Global Properties to define the CBA Presentation Size for existing projects.

Item Deployment: For the use of CBA ItemBuilder generated items, the Presentation Size defines the display size and aspect ratio for which the items are designed. Within the space available for the delivery in a web browser or browser component, the deployment software is expected to provide options to customize the behavior: Alignment of the content in horizontal (left, center, right) and vertical (top, middle, bottom) direction as well as optional Proportional Scaling of the content (un-scaled, up-and-down, down).12

Tip: When starting a new project, the following questions can help to find the best CBA Presentation Size:

	Should the items be optimized for a 4:3 display (e.g., 1024x768 pixels) or for a 16:9 display (e.g., 1366x768 pixels)?

	Should the items be displayed in portrait format (width > height) or landscape format (height > width) with as few white borders as possible?

	Are low-resolution screens (e.g., notebooks with 1024x600 pixels), medium-resolution (e.g., computers with FullHD monitors), or high-resolution screens (e.g., modern tablets or computers with 4K resolution) expected?

	Should the items be delivered in full-screen mode, or is additional space on the screen necessary for either navigation or the browser window?

	Is extra space covered by an on-screen keyboard, or do the items either not require a keyboard, or can a hardware keyboard be assumed?

Scaling Options: Proportional scaling should ensure that the items can still be displayed even if answers to this question change or if the test is performed on heterogeneous hardware. However, the display and usability may then be less than ideal. Deployment software should provide the following options, that also can be requested by item authors for task Preview (see also section 1.4.2):

	None: Content is presented at 100%, and either a scrollbar appears (if the CBA Presentation Size of a task is larger than the effectively available size on screen) or space on screen remains empty. The position of the unused space will depend on the configuration for Horizontal and Vertical alignment.

	Up: If the CBA Presentation Size is smaller than the effectively available size on screen, the space will be filled, but content will not be scaled down.

	Down: If the CBA Presentation Size is larger than the effectively available size on screen, items will be scaled to fit the screen, but content will not be scaled up.

	Both: If the CBA Presentation Size is smaller than the effectively available size on screen, the space will be filled and if the CBA Presentation Size is larger than the effectively available size on screen, items will be scaled to fit the screen.

3.3 Quick Start: Create Single Page Items

While the several chapters in this book describe the individual functions, components, and concepts for creating complex assessment components with the CBA ItemBuilder in detail, simple one-page items can be easily made. A simple guide to how to do this is the subject of this Quick Start section.

This section provides step-by-step instructions for creating single-page items. Open the CBA ItemBuilder to implement items based on the instructions. The steps described to create the different items are provided in Figures 3.17, … as videos. If you do not want to complete this hands-on, continue reading in section 3.4.

First, it must be defined what is to be understood as a Single Page Item. Single Page Items are items that fit on a computer screen, i.e., that can be displayed without page switching. When possible, scrolling should be avoided. Single Page Items are typically composed of a question stem or stimulus and one single response format. The response formats Single-Choice, Multiple-Choice, and Text Entry are considered in this section. Moreover, CBA ItemBuilder projects containing tasks for the general instructions (embedding a video), a closing page (containing an image) will be created as Single Page Items.

To give a realistic impression of working with the CBA ItemBuilder, we will start with creating a master project, which we will then adapt for the different item types.

3.3.1 Create Master Project

At the beginning of preparing an assessment project, you have to decide on the screen orientation (portrait or landscape) and aspect ratio (e.g., 16:9 or 4:3) of the computer-based material (see section 2.4). The size that should be supported minimally without scrolling or scaling. As mentioned in the section 3.2.2, 1024x768 can often be a reasonable choice, which is the current default of the CBA ItemBuilder.

[image: Video: Hands-on section 3.3.1 ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IBHandsonVersion96_Section3_3_1/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IBHandsonVersion96_Section3_3_1.zip)).]

FIGURE 3.17: Video: Hands-on section 3.3.1 (html|ib).

1. Check Settings: Before preparing multiple project files, it is recommended to check the settings of the CBA ItemBuilder. For instance, it is suggested to consider the appropriate CBA Presentation Size right at the very beginning. For that purpose, open the main menu Utilities and select Open preferences. The CBA Presentation Size should be defined as Height: 768, and Width: 1024. Change to the section CBA Rulers And Grid and select Apply changes to all pages. Finally, go to the section CBA Item Fonts, click Deselect All. Afterwards, select the two Font Names Arial and Courier New. Close the Preferences dialog with OK. Confirm the message Any open editors must be closed before these changes are applied with OK.

2. Create a new Project: With the main menu File using the entry New project, a new CBA ItemBuilder Project File can be created. It is required to enter a valid project name, for instance, SinglePageItems_MasterProject. As soon as the (empty) project is created, the entry Save from the main menu File can be used to specify the location where the Project File is stored. Select a folder and keep the file name SinglePageItems_MasterProject.zip.

3. Add New Page: Since creating the project, the project name SinglePageItems_MasterProject is shown in the Project View in the left part of the CBA ItemBuilder. Right-click on this project name in the Project View and select the entry Add new page in the context menu. In the dialog that appears keep the suggested name page1 and confirm the dialog with OK.

4. Define Rulers & Grid: The Project View now contains the newly created page page01. Double-click this page in the Project View to open the Page Editor in the main area of the CBA ItemBuilder window. In the Page Editor that opens, right-click in the gray area and select Show Properties View. Select Show Ruler and Show Grid in the section Display, change the Rulers Units to Pixels and change to 20 for the Grid Spacing in section Measurement. Finally, check the option Snap To Shapes.

[Issue 11]
5. Define Border: Click in the white part of the Page Editor. This should select the Panel that was automatically generated by the CBA ItemBuilder for that page1. The type of the selected element is shown in the headline of the Properties view. If the Properties view was closed, right-click anywhere in the Page Editor and select the entry Show Properties View again in the context menu. Find the property Border Width in section Display and enter the value 5.

6. Add HTMLTextField as Headline: Click again in the white part of the Page Editor to select the Panel. When the Panel is selected, the Palette should show a long list of components that could all be added to the selected Panel. If the Palette is not displayed, it can be shown at the right window border with the small icon . Select the HTMLTextField entry () and draw a rectangle in the Drawing Area (inside the Panel) to add the HTMLTextField. Leave two boxes of the grid blank on the left, right and top and draw the rectangle 4 grid boxes high while holding down the mouse button. This way it should be 940 pixels wide and 80 pixels high, and placed at X=40 and Y=40.

Check the following values in the Position-section of the Properties view: Height: 80, Width: 940, X: 40, and Y: 40. If the Properties view was closed in a previous step, open it using the context menu. If the headline of the Properties view is showing a different component type than HTMLTextField, select the HTMLTextField in the Page Editor.

The HTMLTextField is now aligned relative to the Panel in the top. To enter text, double-click the HTMLTextField and enter the text Headline in the HTML Text Editor. Select the text and change the font to Arial and the size to 30. Finally, save the changes using the button Save and Close.

7. Add HTMLTextField for Content: Repeat step 5 and create a second HTMLTextField. Start by selecting the Panel in order to see the entry HTMLTextField in the Palette. Position the second HTMLTextField aligned below the first and draw the HTMLTextField with 80 pixels height and leave 20 Pixel distance. You can also change the position in the Page Editor or enter the values in the section Position of the Properties-view: Height: 80, Width: 940, X: 40, and Y: 140. Double-click the new HTMLTextField and enter the text Content in the HTML Text Editor. Change the font to Arial of size to 20 and close the editor with the Save and Close button.

8. Add and Configure Next-Button: Buttons can be added to components of type Panel. Select the Panel and find and click the entry Button in the Palette. When the component type is selected in the Palette a new button can be added to the page by drawing a rectangle into the Drawing Area. It should be two three boxes (i.e., 60 pixels) height, ten boxes (i.e., 200 pixels) width and two full boxes left and below in the lower right corner of the Panel. You can also use the Properties view and enter Height: 60, Width: 200, X: 780, and Y: 660 in the section Position. Find the tab Appearance and click it, and change the formatting of the button. Select Arial as font and set the font size to 20. Moreover, set the font color to white using the button . Now set the background color using the button and select Custom... in the small color dialog. In the Choose Color change to RGB and enter Red: 50, Green: 100 and Blue: 200 and confirm with OK. Navigate back to the tab Core in the Properties view and change the Properties Use Default Link Color to false and Use Same Color For Visisted Reference to true.

Next, double-click the button and enter the text Next in the dialog Configure a Multiline Text, before closing the dialog wit OK. Finally, right-click the button in the Page Editor an select the entry Set command in the context menu. In the dialog Set Runtime Command click on the entry NEXT_TASK and confirm the selection with OK.

9. Define Task: Open the Task Editor using the main menu Project and the entry Browse Task and Item Score . In the right area of the CBA ItemBuilder main window a tab titled Tasks will appear. Click the first button New below the headline Tasks. This will move the cursor to the first row to the column titled Name. Keep the default Name task0 and the select the name of the page created in step 3 (page1) as the Start Page.

10. Save and Preview: The project can now be saved, for instance, using the main menu File and the entry Save . Confirm the message box Save Resource that informs that page01.cbambl_diagram has been modified with Yes. Finally, in the preview (main menu Project the entry Preview Project) the item should now look like shown in Figure 3.18. In case of a problem, download and open the CBA ItemBuilder project file SinglePageItems_MasterProject.zip.

[image: Output of hands-on section 3.3.1 ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SinglePageItems_MasterProject/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SinglePageItems_MasterProject.zip)).]

FIGURE 3.18: Output of hands-on section 3.3.1 (html|ib).

Using the master item created in the ten steps, it is possible to create various single page items. For this purpose, the components used to capture the response must be added. The required steps are will be described for the different response formats Single Choice, Multiple-Choice, and Text Response, in a subsection each.

3.3.2 Create Single-Choice Item

[image: Video: Hands-on section 3.3.2 ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IBHandsonVersion96_Section3_3_2/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IBHandsonVersion96_Section3_3_2.zip)).]

FIGURE 3.19: Video: Hands-on section 3.3.2 (html|ib).

1. Open Master and Save as SinglePageItems_01SC.zip: Open the master item created in the previous section 3.3.1 (or download SinglePageItems_MasterProject.zip) using the icon in the CBA ItemBuilder (or use the main menu File and the entry Open project). Save the Project File with the new name SinglePageItems_01SC.zip using the main menu File and the entry Save as... (or use the icon).

2. Rename the Project: After saving the project to a new file, the project itself needs to be renamed as well. For that purpose, right click on the old project name SinglePageItems_MasterProject in the Project View and select Rename project. Enter the name SinglePageItems_01SC and confirm the dialog with OK.

3. Update Headline and Text: The most visible customization necessary to turn the master project into an item is editing the HTMLTextFields that are used for the heading and page content. To make this change, first open the page page01 in the Page Editor by double-clicking on page01 in the Project View (alternatively, you can also use the context menu in the Project View, which can be opened with a right-click on the page and which contains the entry Open page). Once the page is opened in the Page Editor (i.e., the tab in the middle region of the CBA ItemBuilder titled page01.cbaml_diagram), the text in the HTMLTextFields can be edited. Replace the text Headline with Single-Choice Task and insert as Content the text Select the option that answers the following question: (italic) and then, after two line breaks (i.e., with an empty line in between): Which answer is correct? Close the HTML Text Editors each time with Save and Close.

4. Add RadioButtonGroup: In the next step, a so called RadioButtonGroup will be inserted (see section 3.9.2). A RadioButtonGroup is necessary to define the connection between the components of the type RadioButton, inserted in the next step. To add the RadioButtonGroup, select the Panel in the Page Editor first. Afterwards, find and select the icon RadioButtonGroup () in the Palette. To add a RadioButtonGroup to the page, click in the Drawing Area within the Panel below the second HTMLTextField and hold the left mouse button clicked while moving the mouse to draw a rectangle. Add the RadioButtonGroup to fill the remaining space with 40 pixels border around. After releasing the mouse button open the Properties view if necessary using the context menu (right-click on the RadioButtonGroup and select the entry Show Properties View). Check the following values in the Position section: Height: 360, Width: 940, X: 40, and Y: 260.

5. Add the first RadioButton: Adding RadioButtons is only possible within components of type RadioButtonGroup (see section 2.11.4). In the Palette the icon RadioButton () can therefore only be selected if a RadioButtonGroup is selected in the Page Editor. Select the RadioButtonGroup in the Page Area and the RadioButton in the Palette and add a first RadioButton by drawing a rectangle within the area that is covered by the RadioButtonGroup with 20 pixels border to the top, left and right and 60 pixels height. Subsequently, check the position in the Properties view to Height: 60, Width: 900, X: 20, and Y: 20.

Change the values for the properties Control Item Size and Label Distance in section Misc to 30. Change to the tab Appearance () and select Arial as font and 20 as font size. It is also possible to enter Arial (including capitalization) and 20 directly in section Appearance into the properties Font Name and Font Size, respectively. Finally, double-click the RadioButton in the Page Editor and enter the text Option A into the dialog Configure a Multiline Text, that must be confirmed with OK.

6. Duplicate the RadioButton: After creating the first RadioButton, copies of this component can be created using the function Duplicate. For that purpose, the RadioButton that has just been created must be right-clicked to open the context menu that contains a sub-menu Edit with the entry Duplicate.^[If the sub-menu Edit does not contain the entry Duplicate, the text property of the component was selected. In that case, just select another component in the Page Editor and then right-click on the RadioButton again.

[Issue 12]
] After duplicating the RadioButton the first time, arrange it with 20 pixels border below the first or change the Position in the Properties view to Y: 100, and X: 20 and change the text property to Option B (via double-click on the duplicated RadioButton or using the small icon in section Text of the Properties view). Repeat these procedure for a third RadioButton (Y: 180, X: 20, Text: Option C*) and a fourth RadioButton (Y: 260, X: 20, Text: Option D).

7. Provide UserDefinedIDs: Before the scoring can be defined, the created components of type RadioButton must be uniquely named. For this purpose, each Radiobutton must be selected in the Page Editor, and an identifier must be entered in the section Identification of the Properties view as UserDefinedId. To keep the scoring syntax as simple as possible, we use the following schema to name the RadioButtons.First: UserDefinedID: a, second UserDefinedID: b, third UserDefinedID: c, and fourth: UserDefinedID: d (without white spaces).

8. Add Classes as Variables for Scoring: With the help of the UserDefinedID’s, the scoring can now be created exemplary for this item. Let’s assume that Option C is correct. Then we could expect either a true/false-coding in the result data set (i.e., a variable ScoredResponse) or a raw-response coding (i.e., a variable RawResponse). In this example, we create both variables. Variables are defined in the CBA ItemBuilder as Classes. The definition of Classes can be requested in the Task Editor, which can be opened via the menu Project and the entry Browse Task and Item Score or the icon . To create two new Classes, open the Task Editor select task task0. Open the dialog Task Classes Editor with the button Edit Classes. In that dialog create two classes using the button Add new class and enter the class name ScoredResponse for the first class and RawResponse for the second class. Finally, confirm the Task Classes Editor with the button OK.

9. Define Hit-Conditions: Each hit represents a condition to be distinguished as value of a (categorical) variable. The value of the RawResponse variable should indicate which option was selected (resulting in four potential values, defined as Hits RawA, RawB, RawC and RawD). To define a Hit, first a task must be selected in the Task Editor (in this example the task with the name Task01 as defined above). A click into the first table in the Task Editor directly on the name Task01 selects the first task. When the task is selected, a new hit condition can be created with the Add Hit-button. Then, the cursor jumps to the table in the Hits section of the Task Editor. Enter as Name the name RawA for the first Hit, enter as Weight the value 1 and select the Class RawResponse. Then click the Open-button or double-click the newly created Hit to open the Conditions editor in the main CBA ItemBuilder window. For the first Hit just enter here the UserDefinedID of the first RadioButton (i.e. a) and close the editor using the small x in the tab-title (). Confirm to save the changes. Continue for the remaining Hits using the information presented in Table 3.1. Copy the string provided in the column Conditiona-Syntax exactly, including all brackets (see section 4.1.3 for more information).

TABLE 3.1: Example for Hit-definitions of a single-choice item

	Name
	Weight
	Class
	Condition-Syntax

	RawA
	1
	RawResponse
	a

	RawB
	1
	RawResponse
	b

	RawC
	1
	RawResponse
	c

	RawD
	1
	RawResponse
	d

	ScoreWrong
	1
	ScoredResponse
	((a or b) or d)

	ScoreCorrect
	1
	ScoredResponse
	c

To complete the scoring, two more Hit-conditions are needed for the coding of missing responses: A Hit RawOR (assigned to the Class RawResponse) and a Hit ScoreOR (assigned to the Class ScoredResponse). The abbreviation OR is used for Omitted Response (see section 2.5.2). Click the button Open to enter the following syntax as Condition: (((not a and not b) and not c) and not d).

10. Save, Preview and Test Scoring: The project can now be saved () and previewed (). Probably the most error-prone part of creating this item is the scoring definition. With a key combination (default is Ctrl + S) the scoring can be checked directly in the preview (see section 1.5). The scoring is defined correctly if exactly one hit is active for each Class (= Variable) at any time. If no answer is selected, the Hits ScoreOR and RawOR should be active. Once a response is selected, the Hit to the Class RawResponse should indicate which RadioButton was selected. Only if Option C is selected, the Hit ScoreCorrect assigned to the Class ScoredResponse should be active.

[image: Output of hands-on section 3.3.2 ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SinglePageItems_01SC/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SinglePageItems_01SC.zip)).]

FIGURE 3.20: Output of hands-on section 3.3.2 (html|ib).

3.3.3 Create Multiple-Choice Item

[image: Video: Hands-on section 3.3.3 ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IBHandsonVersion96_Section3_3_3/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IBHandsonVersion96_Section3_3_3.zip)).]

FIGURE 3.21: Video: Hands-on section 3.3.3 (html|ib).

1. Open Master and Save as SinglePageItems_02MC.zip: Open the master item created in section 3.3.1 (or download SinglePageItems_MasterProject.zip) using the icon in the CBA ItemBuilder (or use the main menu File and the entry Open project). Save the Project File with the new name SinglePageItems_02MC.zip using the main menu File and the entry Save as... (or use the icon).

2. Rename the Project: After saving the project to a new file, the project itself needs to be renamed as well. For that purpose, right click on the old project name SinglePageItems_MasterProject in the Project View and select Rename project. Enter the name SinglePageItems_02MC and confirm the dialog with OK.

3. Update Headline and Text: Open the page page01 in the Page Editor by double-clicking on page01 in the Project View and edit the HTMLTextFields. Replace the text Headline with Multiple-Choice Task and insert as Content the text Select all alternatives that apply: (italic) and then, after a line break: For which of the following entries a hypothetical rule applies? Close the HTML Text Editors each time with Save and Close.

3. Add the first Checkbox: Adding Checkboxes is possible within components of type Panel. In the Palette the icon Checkbox () can be selected if the Panel is selected in the Page Editor. Select the Panel in the Page Area and the Checkbox in the Palette. Add the first Checkbox by drawing a rectangle at with 40 pixels border top, left and right and a height of 60 pixels. Subsequently, check the position in the Properties view, which should be Height: 60, Width: 940, X: 40, and Y: 260.

Change the values for the properties Control Item Size and Label Distance in section Misc to 30. Go to the tab Appearance () and select Arial as font and 20 as font size. Finally, double-click the Checkbox in the Page Editor and enter the text Entry 1* into the dialog Configure a Multiline Text, that must be confirmed with OK.

4. Duplicate the Checkbox: After creating the first Checkbox, create copies of this component again using the function Duplicate. For that purpose, the Checkbox that has been created in step 3 must be right-clicked to open the context menu that contains a sub-menu Edit with the entry Duplicate. After duplicating the Checkbox the first time, change the Position in the Properties view to X: 40, and Y: 340 and change the text property to Entry 2 (via double-click on the duplicated RadioButton or using the small icon in section Text of the Properties view). Repeat these procedure for a third Checkbox (X: 40, Y: 420, Text: Entry 3*) and a fourth Checkbox (X: 40, Y: 500, Text: Entry 4).

5. Provide UserDefinedIDs: Each Checkbox must obtain a unique name as UserDefinedID. Since UserDefinedIDs are not allowed to start with a number, the following schema is used to name the Checkboxes: First: UserDefinedID: e1, second UserDefinedID: e2, third UserDefinedID: e3, and fourth: UserDefinedID: e4 (without white spaces). To assign the UserDefinedIDs select each Checkbox in the Page Editor, and enter the identifier in the section Identification of the Properties view.

6. Add Classes as Variables for Scoring: With the help of the UserDefinedID’s, the scoring can now be created exemplary for this item. Let’s assume that Entry 1 and Entry 3 are required for a correct response. Since the item is in multiple-choice format, we can either define a true/false-coding in the result data set for each choice, or a combinded score variable. In this example, we create both variables. Variables are defined in the CBA ItemBuilder as Classes. The definition of Classes can be requested in the Task Editor, which can be opened via the menu Project and the entry Browse Task and Item Score or the icon . To create two new Classes, open the Task Editor, select Task task0 and use the button Edit Classes. In the dialog Task Classes Editor use the button Add new class and enter the class name ScoredResponse for the first class and RawResponse1, RawResponse2, RawResponse3, RawResponse4 for four remaining classes. Finally, confirm the Task Classes Editor with the button OK.

7. Define Hit-Conditions: After defining the Classes the definition of Hit-conditions is necessary. Select the Task with the name Task01 in the Task Editor. To add a Hit-condition use the button Add Hit and type the name this Hit in the first column: Entry1Selected. Press the Tab key and maintain the default 1as Weight in the second column and select the class RawResponse1 in the third column. Once the Hit is created, double-click the Hit or use the button Open to enter the condition-syntax e1 into the Tab titled Condition - <Entry1Selected>. Close the editor and confirm to save the changes. After creating the first Hit, continue with the information presented in Table 3.2.

TABLE 3.2: Example for ‘Hit’-definitions of a multiple-choice item

	Name
	Weight
	Class
	Condition-Syntax

	Entry1Selected
	1
	RawResponse1
	e1

	Entry1NotSelected
	1
	RawResponse1
	not e1

	Entry2Selected
	1
	RawResponse2
	e2

	Entry2NotSelected
	1
	RawResponse2
	not e2

	Entry3Selected
	1
	RawResponse3
	e3

	Entry3NotSelected
	1
	RawResponse3
	not e3

	Entry4Selected
	1
	RawResponse4
	e4

	Entry4NotSelected
	1
	RawResponse4
	not e4

	ScoreWrong
	1
	ScoredResponse
	(((e2 or e4) or not e1) or not e3)

	ScoreCorrect
	1
	ScoredResponse
	(((e1 and e3) and not e2) and not e4)

8. Define Missing-Values: Typically, in RadioButtonGroups (used for the single-choice item in section 3.3.2) no RadioButton is pre-selected. Hence, the response is missing until one RadioButton of a RadioButtonGroup is selected. Components of type Checkbox (used for the multiple-choice items) can not distinguish whether a response was not given or the Checkbox was intentionally not selected. Accordingly, defining missing values for Checkboxes is either impossible or must take additional information into account. In this example, we only apply missing value coding to the score variable. For this purpose, we use the operator user_interactions() that counts the number of interactions in the current task. Suppose this number is smaller than the minimal number of interactions (one for clicking the Next-button). In that case, we consider the value of the variable ScoredResponse to be the Hit for an omitted response. In order to implement this approach for missing-value coding, select the Task labeled Task01 in the Task Editor, add an additional Hit using the button Add Hit and name this Hit ScoreOR (Weight: 1; Class: ScoredResponse). Edit the Hit using the button Open (or double-click the Hit ScoreOR) and enter the following syntax: [user_interactions()==0]. Close the Condition-editor using the small x in the tab-title () and confirm to save the changes. Note that a more specific missing-value coding counting only answer-change events would be possible using the CBA ItemBuilder, but is omitted here in the quick start example.

9. Re-Define Scoring for the ScoredResponse-Variable: What, if a test-taker clicks the Next-button without selecting any Checkbox? The Hit ScoreWrong will be active, since the defined Hit-condition (((e2 or e4) or not e1) or not e3) is fulfilled. It is not true, that the Checkboxes with the UserDefinedId's e1 and e2 are selected. However, at the same time the Hit ScoreOR is active, since the number of user-interactions would zero. To observe this prediction open the Preview (main menu Project the entry Preview Project or the icon), click into the item and hit the key combination (default is Ctrl + S). You can verify that as long as the number of interactions is zero, both Hits are active at the same time. Reload the page in the preview (typically by hitting F5 to try again). To resolve this issue, we can make use of the fact that at least two interactions (selecting any Entry 2 and pressing the Next-button) are necessary. Hence, we can adjust the scoring syntax and use the scoring-syntax ((((e2 or e4) or not e1) or not e3) and [user_interactions()>=2]) for the Hit that correspond to a wrong response. Using this adaptation the condition is mutually exclusive with [user_interactions()<2], the condition used for the Hit that correspond to an omitted response on the ScoredResponse-variable. To adjust the scoring, double-click the Hit ScoreWrong and copy the following condition syntax in to the editor provided by the CBA ItemBuilder: ([user_interactions()>1] and not (e1 and e3)). Finally, also adjust the Hit ScoreOR to the following syntax: [user_interactions()<2]

10. Save, Preview and Test Scoring: This concludes the multiple-choice item and the project can now be saved () and previewed () again. Check the scoring using the Scoring Debug Window in the preview (see section 1.5).

[image: Output of hands-on section 3.3.3 ([html](https://kroehne.github.io/CBAItemBuilderBook/items/UNKNOWN/QuickstartSimpleMC/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/UNKNOWN/QuickstartSimpleMC.zip)).]

FIGURE 3.22: Output of hands-on section 3.3.3 (html|ib).

3.3.4 Create Text-Entry Item

[image: Video: Hands-on section 3.3.4 ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IBHandsonVersion96_Section3_3_4/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IBHandsonVersion96_Section3_3_4.zip)).]

FIGURE 3.23: Video: Hands-on section 3.3.4 (html|ib).

1. Open Master and Save as SinglePageItems_03TXT.zip: Open the master item created in section 3.3.1 (or download SinglePageItems_MasterProject.zip) using the icon in the CBA ItemBuilder (or use the main menu File and the entry Open project). Save the Project File with the new name SinglePageItems_03TXT.zip using the main menu File and the entry Save as... (or use the icon).

2. Rename the Project: After saving the project to a new file, the project itself needs to be renamed as well. For that purpose, right click on the old project name SinglePageItems_MasterProject in the Project View and select Rename project. Enter the name SinglePageItems_03TXT and confirm the dialog with OK.

3. Update Headline and Text: Open the page page01 in the Page Editor by double-clicking on page01 in the Project View and edit the HTMLTextFields. Replace the text Headline with Text-Entry Task and insert as Content the text Use the keyboard to provide an answer to the following question: (italic) and then, after a line break: What is the "Answer to the Ultimate Question of Life, the Universe, and Everything"? Close the HTML Text Editors each time with Save and Close.

4. Add two HTMLTextFields to Provide Context for the Text-Response: Two more components of type HTMLTextField are necessary to embed the text input into a response phrase. Select the Panel in the Page Editor. Then select the HTMLTextField entry () in the Palette and draw a rectangle in the Drawing Area (inside the Panel) to add the HTMLTextField to the page. Use the Properties view to specify the position: Height: 40, Width: 170, X: 40 and Y: 300. Double-click the HTMLTextField and enter the text The answer is (font Arial and font size 20). Save and Close the HTML Text Editor. Add a second HTMLTextField with text . (font Arial and font size 20) at the position: Height: 40, Width: 40, X: 320 and Y: 300.

5. Add a SingleLineInputField: SingleLineInputField can be added to components of type Panel. In the Palette the icon SingleLineInputField () is available if a Panel is selected in the Page Editor. Select the Panel in the Page Area and the SingleLineInputField in the Palette. Add the SingleLineInputField to the page by drawing a rectangle in the free area between the two HTMLTextFields added in step 4. To make sure the SingleLineInputField is precisely adjusted check the position and change the Y coordinate in the Properties view (Height: 40, Width: 110, X: 210, and Y: 295). Moreover, define a Border Width: 2 in the section Display. Finally, change to the tab Appearance () and select Arial as font and 20 as font size.

6. Define the Input Validation Pattern: Text fields without input restrictions can be a challenge for privacy and scoring. Therefore, and because we expect a number to be the answer, we can use an Input Validation Pattern to configure that only digits can be entered. For that purpose select the SingleLineInputField and enter the string [0-9]* in the section Misc of the Properties view.

7. Provide UserDefinedID: The scoring definition needs an identifier for the SingleLineInputField. Enter the property User Defined Id: txt in the Identification section of the Properties view.

8. Add Classes as Variables for Scoring: As a result of an item with text input, two variables can be distinguished again. A RawResponse variable should contain the entered text, and a ScoredResponse variable can, if the string can be evaluated automatically using, for instance, regular expressions, indicate whether the answer is correct or incorrect. First, two Classes must be created to prepare the definition of the corresponding scoring syntax. The definition of Classes is possible in the Task Editor, which can be opened via the menu Project and the entry Browse Task and Item Score or the icon . To create two new Classes, open the Task Editor, select the Task task0and use the button Edit Classes. In the dialog Task Classes Editor use the button Add new class and enter the class name ScoredResponse for the first class and RawResponse for the second class. Finally, confirm the Task Classes Editor with the button OK.

9. Define Hit-Conditions: Hit-conditions are required for the two Classes ScoredResponse and RawResponse. Assume the correct response is 42. The scoring-operator matches(txt,"42") (see section 5.3.4) can be used to compare the text entered into the SingleLineInputField with the UserDefinedId: txt with the string for a correct response. Select the Task with the name Task01 in the Task Editor. Add a Hit-condition using the button Add Hit and type the name for this Hit in the first column: ScoreCorrect. Press the Tab key and remain 1 as the Weight in the second column and select the class ScoredResponse in the third column. Once the Hit is created, double-click the Hit or use the button Open to enter the condition-syntax matches(txt,"42") into the Tab titled Condition - <ScoreCorrect>. Close the editor and confirm to save the changes. After creating the first Hit, continue with the information presented in Table 3.3.

TABLE 3.3: Example for ‘Hit’-definitions of a text-entry item

	Name
	Weight
	Class
	Condition-Syntax

	ScoreCorrect
	1
	ScoredResponse
	matches(txt,"42")

	ScoreWrong
	1
	ScoredResponse
	(not matches(txt,"") and

	~
	~
	~
	not matches(txt,"42"))

	RawResultText
	1
	RawResponse
	(not matches(txt,"")

	~
	~
	~
	and result_text(txt))

As shown in Table 3.3, the Hit ScoreWrong of the class ScoredResponse uses the matches()- operator two times, combined as logical expression (see section 4.1.3). The condition-syntax for the Hit RawResultText of the class RawResponse uses the result_text()-operator, also as part of a logical expression. The result_text()-operator copies the text of the component (see the UserDefinedId provided as argument) to the variables Result text).

To complete the scoring of the text-entry item, two more Hit-conditions are needed for the coding of missing responses: A Hit RawOR (assigned to the Class RawResponse) and a Hit ScoreOR (assigned to the Class ScoredResponse). Click the button Open to enter the following syntax as Condition: matches(txt,"") to both Hit-conditions.

10. Save, Preview and Test Scoring: This concludes the text-entry item and the project can now be saved () and previewed (). Check the scoring using the Scoring Debug Window in the preview (see section 1.5).

[image: Output of hands-on section 3.3.4 ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SinglePageItems_03TXT/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SinglePageItems_03TXT.zip)).]

FIGURE 3.24: Output of hands-on section 3.3.4 (html|ib).

3.3.5 Create a Closing Page

[image: Video: Hands-on section 3.3.5 ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IBHandsonVersion96_Section3_3_5/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IBHandsonVersion96_Section3_3_5.zip)).]

FIGURE 3.25: Video: Hands-on section 3.3.5 (html|ib).

1. Open Master and Save as SinglePageItems_END.zip: Open the master item created in section 3.3.1 (or download SinglePageItems_MasterProject.zip) using the icon in the CBA ItemBuilder (or use the main menu File and the entry Open project). Save the Project File with the new name SinglePageItems_04END.zip using the main menu File and the entry Save as... (or use the icon).

2. Rename the Project: After saving the project to a new file, the project itself needs to be renamed as well. For that purpose, right click on the old project name SinglePageItems_MasterProject in the Project View and select Rename project. Enter the name SinglePageItems_END and confirm the dialog with OK.

3. Update Headline and Text: Open the page page01 in the Page Editor by double-clicking on page01 in the Project View and edit the HTMLTextFields. Replace the text Headline with Thank You and insert as Content the text You have reached the end of this short assessment. and then, after a line break: Click "Finish" to end the test. (italic). Close the HTML Text Editors each time with Save and Close.

4. Use the Resource Browser to Insert Image: As an example on how to use images, an image should be displayed on the last page. For this purpose, the picture must be added using the Resource Browser to the Project File first. Open the Resource Browser over the main menu Project and the entry Browse resources (or use the icon). Any image in one of the supported file formats (see section 3.10.1) can be used.13 Unpack this ZIP archive and then click the Add button in the Resource Browser of the CBA ItemBuilder to add the file ExampleImage_min.png to the list of Available resources. Close the Resource Browser via the small cross in the tab title ().

5. Add a ImageField and Link the Image: Once resources have been added to the Project File, they can be used in components. Next, add an ImageField. Components of type ImageField can be inserted into Panels. To add an ImageField, open the page page01 by double-clicking in the Project View for editing in the Page Editor and select the already existing Panel. Use the headline of the Properties view (right mouse button in the Page Editor and then the entry Show Properties View in the context menu) to check that you have selected the Panel. Then select the ImageField () in the Palette and click inside the Panel in the drawing area of the Page Editor with the left mouse button while moving the mouse so that a small rectangle is created. Click the ImageField with the right mouse button and select the entry Link Image. In the dialog Select Image that will appear, select the file name of the picture added in step 3 (e.g., ExampleImage_min.png). Finally, adjust the position of the ImageField by entering the following numbers in the section Position of the Properties view: Height: 380, Width: 944, X: 40, and Y: 240.

6. Update Button-Text: Finally, change the text of the Button from Next to Finish. To edit the text, double click the Button.

7. Save and Preview: This concludes the assessment component prepared as the last page. The project can now be saved () and previewed (). Verification of a scoring-definition is not necessary since the last page does not contain any response elements.

[image: Output of hands-on section 3.3.5 ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SinglePageItems_END/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SinglePageItems_END.zip)).]

FIGURE 3.26: Output of hands-on section 3.3.5 (html|ib).

3.3.6 Create an Instruction Page

[image: Video: Hands-on section 3.3.6 ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IBHandsonVersion96_Section3_3_6/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IBHandsonVersion96_Section3_3_6.zip)).]

FIGURE 3.27: Video: Hands-on section 3.3.6 (html|ib).

1. Open Master and Save as SinglePageItems_INSTR.zip: Open the master item created in section 3.3.1 (or download SinglePageItems_MasterProject.zip) using the icon in the CBA ItemBuilder (or use the main menu File and the entry Open project). Save the Project File with the new name SinglePageItems_01INSTR.zip using the main menu File and the entry Save as... (or use the icon).

2. Rename the Project: After saving the project to a new file, the project itself needs to be renamed as well. For that purpose, right click on the old project name SinglePageItems_MasterProject in the Project View and select Rename project. Enter the name SinglePageItems_INSTR and confirm the dialog with OK.

3. Update Headline and Remove HTMLTextField Content: Open the page page01 in the Page Editor by double-clicking on page01 in the Project View and edit the HTMLTextFields. Replace the text Headline with Welcome. After closing the HTML Text Editor with the button Save and Close select the second HTMLTextField at X: 40 and Y: 140 in the Page Editor. After selecting the HTMLTextField press the delete key or right click and select Delete from Model () to delete the second HTMLTextField.

4. Use the Resource Browser to Insert Video: As an example on how to use videos, a small video should be displayed on this first page. For this purpose, the video must be added using the Resource Browser to the Project File first. Open the Resource Browser over the main menu Project and the entry Browse resources (or use the icon). Any video in one of the supported file formats (see section 3.10.1) can be used. If you don’t have a picture at hand, a sample image can be downloaded here: SinglePageItemsResources. Unpack this ZIP archive and then click the ‘Add’ button in the Resource Browser of the CBA ItemBuidler to add the file ExampleVideo.mp4 to the list of Available resources. The video was created using Microsoft PowerPoint’s export feature. The video size used for this export was 852x480 pixel. A *.mp4-file was created by PowerPoint that can be embedded and shown on a page, after it was added to the Resource Browser. Close the Resource Browser via the small cross in the tab title ().

5. Add a Video-Component and Link the Video: The video added to the Project File, can now be used in components. To play videos, the CBA ItemBuilder provides the Video-component. Video-components can be added to Panels. To place the component of type Video, open the page page01 by double-clicking in the Project View for editing in the Page Editor and select the already existing Panel. When the Panel is selected, components of type Video can be selected in the Palette. Select the Video () in the Palette and click inside the Panel in the drawing area of the Page Editor with the left mouse button while moving the mouse so that a small rectangle is created. Click the Video with the right mouse button and select the entry Link Video. In the dialog LinkVideo that will appear, click the button Browse for Internal Media and select the video’s file name added in step 3 (e.g., ExampleVideo.mp4). Adjust the Video position by entering the following numbers in the section Position of the Properties view: Height: 480, Width: 852, X: 40, and Y: 140. Finally, find the section Misc in the Properties view and configure Automatic Start: true and Hide Controls: true.

6. Save and Preview: This concludes the assessment component prepared as the first page. The project can now be saved () and previewed (). Note that the CBA ItemBuilder will inform you when requesting the Preview, that an automatically started audio or video might not be previewed correctly until the first user-interaction took place in the browser (see section 1.4.2 for details). Check the box Show login dialog. In the preview, a small dialog appears, asking for a Username. Use any Username. Because a user-interaction took place for entering the Username, the video will automatically start.

[image: Output of hands-on section 3.3.6 ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SinglePageItems_INSTR/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SinglePageItems_INSTR.zip)).]

FIGURE 3.28: Output of hands-on section 3.3.6 (html|ib).

Summary: This hands-on section described how to create single-page items using the CBA ItemBuilder. Items made according to this template can be used for computer-based assessments. The quick-start section 7.1 picks up the created CBA ItemBuilder Project Files again and shows how to combine the Tasks as simple offline delivery. The sample items illustrate the three most common response formats (single-choice, multiple-choice, and short text responses). Only one item was placed on each page. The welcome page was used to illustrate how images can be embedded, and the instruction page gives an impression of how to include videos into assessment components created with the CBA ItemBuilder. The created ItemBuilder Project Files each contained only one Task with only one page of the type Simple Page. Dynamic content that will be introduced in chapter 4 was not required to implement the simple single page items.

3.4 Pages and Page Types

Assessment components created with the CBA ItemBuilder, such as items and instructions, are composed by Pages. Each page has a Page Type, which is defined when the page is created. The type of a page determines how the pages can be used to design items.

3.4.1 Basic Page Type Simple Page

Pages in the CBA ItemBuilder have a Page Type, for instance, Simple Page, which is set when the page is created. The Page Type of a page can be changed after the page is created using the dialog Page Settings.

Depending on the intended task design, pages of different Page Type are required. Section 3.4 gives an overview of the types available in the CBA ItemBuilder and explains the primary purpose for each Page Type.

New Page Dialog: Creating new pages in a project is done by clicking the icon or by selecting the entry Add new page in the context menu (see Figure 3.29).

[image: Toolbar icon and context menu to create a new page.]

FIGURE 3.29: Toolbar icon and context menu to create a new page.

Both possible methods open the New Page-dialog (see panel A in figure 3.30), where the name for the new page to be created must be entered. Page names must not start with a digit and may only contain characters and digits, without special characters (except for _).

[image: CBA ItemBuilder *New Page*-Dialog (left without and right with *Advanced* properties)]

FIGURE 3.30: CBA ItemBuilder New Page-Dialog (left without and right with Advanced properties)

By clicking the Show Advanced button in the New Page dialog, additional properties of new pages to be created can be set (see panel B in figure 3.30).

The page type can be selected (see section 3.4), pages can be tagged as standardPage or xPage (see section 3.4) and it can be deselected that components of type Frame and Panel are automatically created when the page is created (see section 3.5). If this default is kept, then it can be specified in which size Frame and Panel are created and whether the Frame (and thus the page) is created as Dialog (see section 3.15).

Most assessment components created with the CBA ItemBuilder consist of one or more pages of the type Simple Page (see Table 3.4).

TABLE 3.4: Basic page type Simple Page of the CBA ItemBuilder and xPages

	Page Type
	Description

	Simple Page ~~~
	Pages of the type simple page can be used to implement assessment components such as items or instruction pages with the CBA ItemBuilder. By default, simple pages are shown in CBA ItemBuilder Tasks separately on screen, filling the available space up to the defined CBA Presentation Size. Simple pages can be linked to other simple pages. Simple pages are the primary page type that can also be used for advanced applications, such as dialogs or as page components included in PageAreas-components.

	xPage ~~~
	A page that is displayed simultaneously with another pag e in a Task is called an xPage (see section 3.6.2). xPages are typical of type Simple Page, and xPages defined for a Task can remain visible while navigating between different non xPages in the main area of the task. For example, xPages can be used to implement a common instruction or a navigation area that is visible during the complete task. Note that all other page types can also be marked as xPage and that xPages can be combined with pages other than Simple Pages.

[image: Item illustrating different *Page Types* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ExampleTasksIllustratingAllPageTypes/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ExampleTasksIllustratingAllPageTypes.zip)).]

FIGURE 3.31: Item illustrating different Page Types (html|ib).

The item in Figure 3.31 uses multiple tasks to illustrate different page types and their use. The additional page types shown in Figure 3.31 and the components that can be added to pages of particular type will be described in subsection 3.13.

3.4.2 Pages Flagged as xPage

xPages are required to implement so-called xPage-layouts. An xPage-layout combines two pages simultaneously on screen (one regular page and one xPage). Pages can be changed using Links (see section 3.11 and Conditional Links, see section 4.3, and by assigning State to pages, see section 4.4.9). The xPage layout briefly described in Table 3.4 (see section 3.6.2 for details) requires that pages of the appropriate size for the particular area be linked in the page-area and the xPage-area. To ensure that this distinction fundamental to as xPage-layouts can be automatically maintained when creating Links using the CBA ItemBuilder’s user interface, regular pages, and pages with the xPage tag are consequently separated. xPages are defined when creating new pages (see Figure 3.32) in the Advanced-section of the New Page-Dialog of the CBA ItemBuilder.

The xPage flag is used to help creating complex items for Tasks using an xPage-layout (see section 3.6.2).

[image: Tag for creating a new page as *XPage*.]

FIGURE 3.32: Tag for creating a new page as XPage.

Pages can also be flagged as xPage (see Figure 3.33, when pages are imported from the Template Browser (see section 6.8.7 for details).

[image: Checkbox to tag a page created using *Template Browser* as *XPage*.]

FIGURE 3.33: Checkbox to tag a page created using Template Browser as XPage.

The distinction between regular pages and xPages simplifies and structures complex assessment components created with the CBA ItemBuilder. For the definition of links, pages and xPages are not accidentally mixed. Section 3.11.4 describes how this classification is also applied to dialogs and popups.

The tagging of a page as xPage and / or standardPage can be changed again at any time via the Page Settings-dialog (see figure 3.34). The dialog can be called via the context menu of a page in the Project View.

[image: Dialog for changing *Page Settings*.]

FIGURE 3.34: Dialog for changing Page Settings.

The page type Simple page is the default page type for creating assessment components using the CBA ItemBuilder. The size of Simple page is defined by the a component of type Frame used as root element (see section 3.5.1). Each page needs a Frame and only one Frame can be defined each page. Pages of type Simple page can be shown in PageAreas (see section 3.5.4) and the Frame of a Simple page can contain one or multiple PageAreas. Pages of simple type page are also the basis for creating Dialog-pages (i.e. pop-up pages within the item, see section 3.15).

The CBA ItemBuilder also provides additional page types. The page type is central to the functions and features of the CBA ItemBuilder:

	Selected components can be added only to pages of a particular type. Unless otherwise specified, the different components described in this chapter are intended for pages of type simple page. The Component Register (see Appendix 10.6) provides a complete listing of which components can be added to pages of which type.

	To implement a specific task layout, pages flagged with the xPage attribute are required. To implement an xPage-Layout, a regular page and an xPage must be combined (see section 3.6.2 for details).

	The page type and the xPage attribute defines which pages can be linked to each other using simple Links and Conditional Links (see section 3.11). For example, pages defined as xPages can only link to other xPages. Similarly, links within Web Child Pages can only be made to other Web Child Pages (see section 3.13.2 for details).

The task definition (see section 3.6.1) is crucial for defining the layout of an assessment component created with the CBA ItemBuilder. The task definition defines if an xPage-Layout is used (see section 3.6.2) and defines the page (and thereby the page type) of the page used as the Start Page.

3.5 Basic Containers (Frame, Panel and PageArea)

The graphical design of assessments in the CBA ItemBuilder is done via pages, each of which contains first a Frame and then usually a Panel.

Since version 9.3 of the CBA ItemBuilder, Frame and Panel are automatically created by default when a new page is created. Only if this option is disabled (see section 3.4), Frame and Panel have to be added as components manually.

This section describes how to start from blank pages yourself (section 3.5.1), and how to nest multiple Panels (section 3.5.2) and how to use advanced features of Panels, such as automatic table layout (see section 3.5.3). Finally, the section ends with a description of PageAreas that can be used to re-use pages multiple times (see section 3.5.4).

3.5.1 Top-Level Component: Frame

A component of type Frame is required as highest component in the hierarchy for pages of all types. Exactly one Frame must be defined on each page, and Frames serve as the container for all other components.

Preparation for Empty Pages: Pages must always have a component of type Frame at the highest hierarchical level. If the item design does not uses an xPage (see the description of xPages, above in the section 3.4), then the size of the Frame should correspond to the size defined as CBA Presentation Size (see section 3.2.2).

[image: Empty *Page Editor* if no `Frame` is defined.]

FIGURE 3.35: Empty Page Editor if no Frame is defined.

To define a Frame manually, the page must first be opened in the Project View by double-clicking. Then the Page Editor opens, as shown in figure 3.35. To add a frame, first select the component Frame in the Palette (icon). Then use the mouse to draw a rectangle in the empty area of the Page Editor, where you place one corner by clicking, and then, keeping the mouse button pressed, define the size of the Frame by moving the mouse over to the opposite corner. Then release the mouse button.

If the Palette is not visible in the current workspace of the CBA ItemBuilder, you can show it with the small button (see section 3.1.3 for details about hiding and showing the Palette).

The CBA ItemBuilder item shown in Figure 3.36 illustrates with a video the necessary steps to a) create a new page without Frame and Panel and b) adding manually a Frame and a Panel which fill the complete CBA Presentation Size (in this example 1024x768 pixels).

[image: Video illustrating manual definition of `Frame` and `Panel` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VideoCreateFrameAndPanel/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VideoCreateFrameAndPanel.zip)).]

FIGURE 3.36: Video illustrating manual definition of Frame and Panel (html|ib).

Frames are created as regular components in the Page Editor. After the component Frame has been selected in the Palette and added to a page using the point-and-click interface, it is recommended to configure the size and position exactly via coordinates (see 3.7.1). If no additional borders are intended, the Frame should be set to the coordinates X=0 and Y=0, with a Height and Width matching the CBA Presentation Size (see section 3.6.2 for details).

The preparation of a Frame is necessary for each page and automatically performed, if the Inizialization is not de-activated.

For this reason, previewing a project with a pages that do not yet contain a Frame lead to the error message shown in Figure 3.37.

[image: Message of a failed *Preview* because every *Page* requires a `Frame`.]

FIGURE 3.37: Message of a failed Preview because every Page requires a Frame.

Since components of the type Frame represent the highest containers in the hierarchy, no further components can be placed on a page outside a Frame.

The Frame of a page contains the complete page content. Accordingly, deleting the Frame of a page will remove all defined components.

To cancel accidental deletion or replacement of components in the Page Editor, the Undo function can be used (see section 3.7).

Size, Identifier and Appearance of Frames: Like all visible elements, components of type Frame can be configured using the properties in the section Position of the Properties view (X, Y, Height and Width, see section 3.7.1). Frames can be uniquely named for the connection with dynamic item contents with a User Defined Id (see section 3.7.4).

The configuration of the size of a Frame requires special attention, because the Frame defines the size of a page. Scrollbars can appear if the height or width of the Frame of a page are larger than the height or width of the CBA Presentation Size.

Frames can be configured with a border, which is displayed with a width of Border Width pixels in the color Border Color. By defining a border with a Border Width different from zero, the Frame and thus the required space for a page will be enlarged. If a Frame is defined with a Width of 100 pixels and an border is defined with a Border Width of 10 pixels , 120 pixels are required for the complete display of the page. The inner size of Frames therefore always remains unchanged.

The space required for a Frame increases when a Border Width larger than zero is defined.

The color of the border will be changed in the Properties view on the tab Appearance via the stroke color (see section 3.1.4). Without affecting the size of a Frame, the background color of a Frame can also be changed using the fill color in tab Appearance of the Properties view.

[Issue 14]
To change the colors (Bacground Color and Border Color) directly in the Properties view, the color values must be known in the internal representation of the CBA ItemBuilder. Since this is usually not the case, edit the colors in the tab Appearance and not in the tab Core. However, you can copy color values that you have defined using the color selection dialog box as numerical values in the Properties view and insert them, for example, in the properties of other components.

[Issue 15]
Additional Properties of Frames: Frame-type components have additional properties that are covered in detail in later sections of this book. Frames can be configured as dialogs. Therefore the properties Dialog and Closable can be changed, located in segment Misc of the Properties view. It should be noted that the property Closeable is only relevant if the property Dialog is not configured as UNDEFINED (default). For full details on popus and dialogs, see section 3.15.

When a Frame is clicked, an event can be raised, which can be processed by a Finite-State Machine in the dynamic part of the CBA ItemBuilder (see chapter 4). For this purpose, Frames provide the property Raised Event in the segment Component Interaction of the Properties view, which can be configured as described in section 4.4.3. If the Frame contains other components, these components will absorb this event.

[Issue 13]
Moreover, the property Mouse Over Text in the segment Text of the Properties view allows for Frames to specify which text is displayed as a tool tip when the mouse is moved over the Frame.

Frames-Select Groups: The CBA ItemBuilder currently provides two ways to group components for single- and multiple-choice responses. As described in section 3.9.2, single-choice answers can be created with components of type RadioButtonGroup and nested components of type RadioButtons. For more advanced use cases (e.g. multiple-choice response formats with a defined number of maximally selected options), an overarching concept is implemented that defines the behavior of single- and multiple-choice answer formats using so-called Select Groups.

[image: Dialog *Configure Select Groups* for single- and multiple-choice select groups.]

FIGURE 3.38: Dialog Configure Select Groups for single- and multiple-choice select groups.

Select Groups are defined for Frames using the dialog shown in Figure 3.38. This dialog is accessible from the context menu of the Component Edit (see section 3.1.2), when the Frame is selected (see Figure 3.39).

[image: Context menu in the *Component Edit* for the `Frame` Component to open the dialog *Configure Select Groups*.]

FIGURE 3.39: Context menu in the Component Edit for the Frame Component to open the dialog Configure Select Groups.

For a complete description of all the functions of Select Groups, see section 3.9.4.

3.5.2 Containers of Type Panel

Each page requires a Frame (see previous section 3.5.1), that can contain one or multiple Panels. At least one Panel is required for most pages. Exceptions are pages that are designed using PageAreas (see section 3.5.4). Accordingly, components of type Frame allow adding one or more components of type Panel and PageArea.

To define a Panel, the page must first be opened in the Project View by double-clicking. Then the Page Editor opens. To add a Panel, first select the component of type Frame in the Page Editor. If the Frame is selected, the Palette allows to select the component Panel (). Use the mouse to draw a rectangle within in the area of the selected Frame, and then, keeping the mouse button pressed, define the size of the Panel by moving the mouse over to the opposite corner. Then release the mouse button. The main properties of Panels can be defined using the Properties view.

[image: Example for `Panels` and `PageAreas` nested within `Frames` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/FrameAndPanelMouseOverExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/FrameAndPanelMouseOverExample.zip)).]

FIGURE 3.40: Example for Panels and PageAreas nested within Frames (html|ib).

Figure 3.40 shows how Frames can contain components of type Panel (pink rectangle on the left and blue area on the right) and of type PareArea (green rectangle in the middle). All components are configures with border (10 pixel for Panels and the PageArea and 20 pixels for the gray Frame at the top level). Use the button Explore Mouse Over... to see the type of each component as mouse over text. As you can see, the PageArea contains a Frame (red) that itself contains a Panel again (gray).

Technical Use of Panels: Frames are containers that can host Panels, and Panels can serve as containers for many other components (see Figure 3.144 in the previous section 3.5.1).

A first Panel is required for most pages for technical reasons (to host components), that can be also used to design the page.

Most of the possible components that can be added to Panels will be briefly described in this chapter, starting with components for displaying text (see section 3.8), components for collecting responses (see section 3.9), components for multimedia content (audio and video, see section 3.10), and components for linking between pages and triggering events (see section 3.11).

Deleting components of type Frame or Panels removes all nested components.

Nesting Panels: Panels can contain Panels. This features is called nesting, since the inner Panel is nested in the outer Panel. The use of nested Panels is useful for two reasons: Additional Panels can be used for graphical design of pages (e.g., by adding a background to the panel). Moreover, additional Panels can facilitate page editing and can be used for grouping components. Components grouped together in Panels can be moved and placed together in the Page Editor (see section 3.7.1).

If (nested) components like Frame and Panel are perfectly overlapping (i.e., X=0 and Y=0 coordinates for the nested child component and identical Width and Height of parent and child component), only the nested inner components can be selected in the graphical Page Editor. To select the outer components, the Component Edit view must be used (see section 3.7.3).

Layout Type: Components of type Panel provide two different Layout Types. By default Panels have the Layout Type=ABSOLUTE, meaning that the positio and size of components within a Panel are defined by coordinates X, Y and by Height and Width. This relates to the general layout approach that uses absolute coordinates (in pixels) to define the exact position of elements. The size and position of a Panel within a Frame or within another Panel with Layout Type=ABSOLUTE is defined by the coordinates X, Y and by the Height and Width of the Panel. All size-related numbers can be defined accurately by entering numbers in the Properties view, or by drag and drop of components in the Page Editor. Within Panels using the Layout Type=ABSOLUTE, elements can also be moved with the arrow keys of the keyboard. Make sure to adjust the Snap to Grid setting and the Grid Spacing (see section 3.1.4) to get best results. If the first Panel within a Frame is defined with some distance to the outer Frame (i.e.,X >0>0 and Y >0>0), it can be used to create margins for pages. In this case, make sure the Width and Height of the Panel are smaller than the Width and Height of the Frame. The border of Panels can be designed to show a visible rectangle around the Panel (see Border Width and Border Color described in section 3.7.5). Panels can be used to show a (background) image (see section 3.10).

A second Layout Type=GRID can be configured to create table-based layouts using multiple nested Panels. This features is called Auto-Layout in the CBA ItemBuilder and is only available for components of type Panel. The position of the first Panel using either Layout Type=GRID or Layout Type=ABSOLUTE is defined with X and Y within the Frame component of a page, and the size of the first Panel is defined by the properties Width and Height. The Layout Type=GRID can be used to change the positioning of nested elements for Panels as described in section 3.5.3.

3.5.3 Auto-Layout-Panels

Pages should look consistent and alike across multiple parts of an assessment. For example, padding and margins should be similar if various pages are designed for one or several Tasks in an assessment project. The CBA ItemBuilder supports this requirement by providing so-called Auto-Layout Panels. The configuration of Auto-Layout Panels starts with the selection of the entry Set Auto Layout for a selected Panel, as shown in Figure 3.41 for example in the Component Edit.

[image: Context menu entry `Set Auto Layout` for selected `Panels` to open the dialog *Auto Layout Panel Properties*.]

FIGURE 3.41: Context menu entry Set Auto Layout for selected Panels to open the dialog Auto Layout Panel Properties.

The dialog Auto Layout Panel Properties allows defining the number of rows and columns that are used for the automatic table layout. Columns and Rows can be of different type (absolute, percent, fill and auto) and the type defines the height and width of rows and columns.

	Absolute: A row or column will take exactly the defined height or width in pixlel.

	Percent: The height of row or the width of columns will be forced to match the defined percent.

	Fill: The row height or column width will fill the available space in the Auto-Layout Panel.

	Auto: The height of row or the width of columns will created to match the required size of its content.

As shown in Figure 3.42, cells call also be merged and for each cell the vertical and horizontal alignment of the content can be defined.

[image: Dialog *Auto Layout Panel Properties* showing an example with merged cells.]

FIGURE 3.42: Dialog Auto Layout Panel Properties showing an example with merged cells.

Panels with Auto-Layout then contain as many child elements of type GridArea as cells are configured over the rows and columns. Each element of type GridArea contain a single component (e.g., an HTMLTextField or a SingleLineInputField) or a Panel that can contain multiple components.

When using the Layout Type=GRID, a table structure for components of type Panel can be created using the Set Auto Layout context menu item. The structure is defined with Rows and Columns and the size and position of the resulting table cells of type GridArea are automatically calculated and cannot be changed in the Page Editor.

The calculation of cell sizes for Auto Layout Panels is done at design time of the item and is performed in the built-in Rendering-view. Based on the defined rows and columns and the combined cells, the resulting GridArea are created that can be selected in the Component Edit. To delete or change GridArea, the dialog Auto Layout Panel Properties must be used. It is also accessible from the context menu in the Component Edit after selecting the Panel that provides the Auto-Layout.

[image: Dialog *Component Edit* of a page with *Auto Layout Panel*.]

FIGURE 3.43: Dialog Component Edit of a page with Auto Layout Panel.

Panels with Auto-Layout can have cells that again contain Panels with Auto-Layout. However, a Panel can only be defined as Layout Type=GRID (i.e, to use Auto-Layout) if the Panel does not already contain components. Otherwise, an warning is displayed (see Figure 3.44).

[image: Message after the attempt to *Set Auto Layout* for a `Panel` that already contains components.]

FIGURE 3.44: Message after the attempt to Set Auto Layout for a Panel that already contains components.

The definition of Auto Layouts only works if the page can be displayed in the Renderer view.

It is required to fix possible configuration errors in the page before calling Set Auto Layout. Only if the page is displayed without error in the Renderer view, the computation of positions for the GridArea components is possible (see numbers in parenthesis in the Component Edit in Figure 3.43).

[image: Message after *Duplicate* was called on the content of a `GridArea`.]

FIGURE 3.45: Message after Duplicate was called on the content of a GridArea.

Each GridArea (i.e. each cell in a Panel with Auto Layout) may contain only one child component. If several components are to be inserted, a Panel is always necessary first, which may then contain several components. If content of a GridArea is duplicated (see section 3.7.2 for a description of the way to Duplicate content), the item definition becomes invalid (see Figure 3.45). This mis-configuration can be fixed by moving the duplicated content to a still empty GridArea in the Page Editor.

3.5.4 Embedded Pages in PageAreas

An alternative approach to increase page similarity is to embed and re-use pages multiple times. Pages can be embedded into pages using PageAreas as shown in Figure 3.144. In addition to Panels also PageAreas can be placed within Frames of Simple Pages. Components of type PageAreas (and similarly also components of the type ChildArea and WebChildArea) are placeholders that define the location and size of embedded page’s content in the frame-component of a page.

[image: Item illustrating scrollbars of `PageAreas` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/PageAreaExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/PageAreaExample.zip)).]

FIGURE 3.46: Item illustrating scrollbars of PageAreas (html|ib).

Multiple PageAreas are possible on one page, as shown in Figure 3.46. The size of the visible area (View Port) corresponds to the size of the PageArea as defined in the Properties view with the properties Width and Height and the location of the PageArea is defined using the properties X and Y.

Use of Embedded Pages: Inserting pages allows a variety of possibilities that can only be listed here. The spectrum of possibilities ranges from the implementation of scrollable regions (as shown in Figure 3.46), over the reuse of page compositions as illustrated in Figure 3.47 to the dynamical display of additional content (see, for instance, section 6.4.4).

[image: Item illustrating how to use content in `PageAreas` multiple times ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ReUsePageAreaOnPagesExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ReUsePageAreaOnPagesExample.zip)).]

FIGURE 3.47: Item illustrating how to use content in PageAreas multiple times (html|ib).

Definition of Embedded Pages: Using components of type PageArea (and analogously also ChildArea and WebChildArea) requires two steps: In the first step the PageArea is inserted and placed in the Page Editor. Since PageAreas can only be added to containers of type Frame, the Frame must first be selected for insertion in the Page Editor, so that the icon for PageAreas is displayed in the Palette (). Note that as illustrated in the video embedded in Figure 3.48, a Panel that already exists within the Frame must be resized before the Frame can be selected.

[image: Item illustrating how to add a `PageArea` if a `Panel` fills the `Frame` completely ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VideoAddPageAreaToPage/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VideoAddPageAreaToPage.zip)).]

FIGURE 3.48: Item illustrating how to add a PageArea if a Panel fills the Frame completely (html|ib).

After selecting the icon PageAreas in the Palette, use the mouse to draw a rectangle in the empty area of the Page Editor. Although PageAreas can only be inserted into components of type Frame, an additional Panel can be used to design the page as a whole. Position and size of PageAreas can be adjusted via the Properties view.

Once a PageArea has been added to the Frame, it can be right-clicked in the Page Editor to bring up the context menu shown in Figure 3.49.

(ref:IBContextMenuPageAreaExample1) Context menu for components of type PageArea.

[image: (ref:IBContextMenuPageAreaExample1)]

FIGURE 3.49: (ref:IBContextMenuPageAreaExample1)

In the context menu of PageAreas the entry Link Embedded Page can be used to open the dialog shown in Figure 3.50. The dialog lists all pages that have been defined in the current Project File and which can be embedded in the current context in the PageAreas. To embed a page it has to be selected in the list and the dialog has to be closed with OK.

(ref:IBLinkeEmbeddedPageDialogExample1) Link Embedded Page dialog for PageAreas.

[image: (ref:IBLinkeEmbeddedPageDialogExample1)]

FIGURE 3.50: (ref:IBLinkeEmbeddedPageDialogExample1)

An initial assignment of an embedded page is necessary, even if the assignment is then changed with conditional links (see section 4.3.4) or in the finite-state machine (see section 4.4.6).

User Defined IDs and PageAreas: With the help of PageAreas pages can be used multiple times in assessment components created with the CBA ItemBuilder. It is therefore necessary that each PageArea has its own unique naming.

The UserDefinedId of PageAreas must be defined (see section 3.7.4) to be able to address page content embedded with PageAreas uniquely. Note that in all syntax components of the CBA ItemBuilder (see section 4.1) all references to content of PageAreas must be include the UserDefinedId of the PageArea (see section 4.1.4).

CBA Presentation Size and PageAreas: After calling the preview, the CBA ItemBuilder checks if the defined pages are larger than the specified CBA Presentation Size (see section 3.6.2). If this is the case, a warning message is displayed, as shown in figure 3.51. When using PageAreas, scrollbars appear automatically, so the warning can be ignored (or de-activated in the Global Properties, see section 6.3).

(ref:IBExampleItemPageAreaExampleWarning01) Warning when pages are larger than the defined CBA Presentation Size.

[image: (ref:IBExampleItemPageAreaExampleWarning01)]

FIGURE 3.51: (ref:IBExampleItemPageAreaExampleWarning01)

3.6 Tasks as Entry Points

After the required pages are defined, the definition of a so-called Task is necessary. Tasks fulfill different functions in CBA ItemBuilder projects. Most importantly, tasks are the entry points to an item for the Preview (see section 1.4) and when the item is used in a test assembly (see chapter 7).

During the preparation of assessment components with the CBA ItemBuilder, the content is distributed to different Tasks. Tasks can be viewed directly with the built-in Preview (see section 1.4.2) and can be understood as the basic building blocks for complex assessment designs (e.g., booklets, rotations etc.).

As an entry point, the Task specifies which page should be used as Start Page, and if specified in the Layout Settings, which xPage should be used as Start xPage. By defining one of the existing pages as the Start Page, the Task also specifies the page type of page. Beyond this function, Tasks are also used to structure scoring within CBA ItemBuilder projects. Since existing pages and item content can be used differently in different tasks, scoring rules are defined per task (see chapter 5 for details about the scoring of CBA ItemBuilder tasks).

3.6.1 Task Definition in the Tasks-View

To use a CBA ItemBuilder project as assessment component, at least the definition of one Task is mandatory as entry point.

The necessary steps and an overview of the central options to configure tasks are described in the following. Using the menu Project > Browse Tasks or with the toolbar icon , the Tasks View in the right panel of the CBA ItemBuilder can be opened. If no task is defined yet, it should look as shown in Figure 3.52.

[image: Empty *Tasks* - view of the CBA ItemBuilder.]

FIGURE 3.52: Empty Tasks - view of the CBA ItemBuilder.

A new Task can be created with the New button and existing Tasks can be edited in the Tasks editor by changing the entries in the particular row. The button Delete removes the Task in the row selected in the Tasks editor.

Task Name: After creating a new task via the New button, the default task name can be changed in the first column (Name). Task names can only contain selected characters: Letters, digits and underscores are allowed and the task name must start with a letter.14

MinHits: The minimum number of hits (default 1) can be entered in the second column (MinHits) and a positive number is expected.

First Page: Each task must define the first page (i.e., the page that is loaded first, when the task is shown). To define the first page, select an existing page from the list of pages. A completely defined task (with the name Task01 and the start page page) should look as shown in Figure 3.53.

[Issue 16]

[image: *Tasks* - view showing a complete *Task*-definition.]

FIGURE 3.53: Tasks - view showing a complete Task-definition.

[Issue 17]
The green symbol in Figure 3.53 indicates that the task definition is correct and that the specified page is part of the current project. A red symbol would be shown in case of a mis-configuration.15

[Issue 18]
If multiple Tasks are defined, the order of Tasks can be adjusted using the buttons and .

Task Initialization: Only for the implementation of items wiht dynamic content (see chapter 4) settings can be prepared for the logic layer of the CBA ItemBuilder using a syntax language (see 4.1). If this is necessary, syntax for the Task Initialization can be defined using the button Open. Afterwards an editor for the currently selected task will open for to entry syntax for the Task Initialization. Details on this syntax and on using the Task Initialization can be found in the 4.5 subsection in chapter 4.

Task Scoring: The three buttons Add Hit, Add Miss and Edit Classes are provided for defining the scoring for a selected task. The defined hit and mis conditions are then displayed in the Tasks-view. Further information about the scoring capabilities of the CBA ItemBuilder can be found in chapter 5.

The remaining two buttons serve the following functions: With Preview the preview can be started for the currently selected task (see 1.4 for details). The Layout button can be used to set the layout for defined tasks (see section 3.6.2 below).

[Issue 6]

3.6.2 Layout Settings for Tasks

A layout can be defined for each defined task. If the layout setting is not changed for a particular task, only one page is displayed at a time by default. The dialog Execution layout settings (see Figure 3.54) can be opened in the Tasks-view using the button Layout. If multiple task are defined in an CBA ItemBuilder project, the settings are applied for the task selected in the list of task in the left part of the dialog.

[image: Dialog *Execution layout settings* to define *xPage*-layouts.]

FIGURE 3.54: Dialog Execution layout settings to define xPage-layouts.

To save the changes, the Apply Settings button must be clicked before closing the dialog.

xPage Layout: The so-called xPage Layout can be activated using the dialog Layout setting (see Figure 3.54).

If the xPage Layout is enabled for a task, an Start xPage must be defined in the Task View together with a Start Page. For that purpose, an existing xPage must be selected in the particular column of the Tasks-table.

As shown in Figure 3.54, the xPage Layout allows to specify the xPage layout for a task using a checkbox. xPage layouts always composed by page and an xPage. The different layout types differ regarding the arrangement of these two components. Relative to the regular page the xPage can be left or right (Horizontal xPage Layout), top or bottom (Vertical xPage Layout). For Horizontal xPage Layout the property xPage size refers to the width of the xPage (full height as defined in the CBA Presentation Size), while for the Vertical xPage Layout the xPage size refers to the height of the xPage (full width as defined in the CBA Presentation Size).

The default size of the xPage Area can be changed at runtime during test taking if the Allow resize option is enabled. To make this possibility visible, a slider can be defined by setting a non-zero value for the ‘Slider width’ property. Finally, for visible sliders, the color can also be selected in the Slider color field.

[image: Item illustrating an *xPage*-layout with enabled slider ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/XPageSliderExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/XPageSliderExample.zip)).]

FIGURE 3.55: Item illustrating an xPage-layout with enabled slider (html|ib).

Figure 3.55 shows an Horizontal xPage Layout with activated Allow resize-property. As can be seen in the example, scrollbars appear when the xPage (here left) or the Simple Page (here right) is larger than the visible area. By moving the Slider the visible size of the two pages can be changed. As you can see in the example, the size setting is retained when, for example, buttons are used to link to another page (see 3.11.4 for more details on using Links in combination with xPages). Table 3.5 summarizes all settings implemented in the CBA ItemBuilder for xPage-layouts. Table 3.5 summarizes the possible settings of the dialog Layout setting shown in Figure 3.54.

[Issue 5]

TABLE 3.5: Settings for xPage layouts

	Setting
	Description

	Enable xPage layout
	Checkbox to enable the xPage layout for the selected task.

	Horizontal xPage layout
	Arrangement of the pages in the xPage layout (left: , right:)

	Vertical xPage layout
	Arrangement of the pages in the xPage layout (top: , bottom:)

	xPage size
	Size of the xPage (width for type left and right, height for type top and bottom).

	Slider width
	Size of the slider, if Allow resize is selected.

	Slider color
	Color of the slider, if the slider size is different from zero.

	Allow resize
	Allow to resize the xPage during runtime. Scrollbars will appear, as soon as the available space is smaller than the size of the Frame.

CBA Presentation Size in Detail: The CBA Presentation Size defines the space on screen, that is used either for a single page or the combination of two pages (xPage-Layout). The item size for new Project Files is defined in the dialog Preferences (see section 3.2.2). Once a Project File is created, the item size is part of the Global Properties of that project. To edit the Global Properties, right-click on the project name and select Global Properties as shown in the Figure 3.56.

[image: Entry *Global Properties* in the *Context Menu* of the project name in the *Project View*.]

FIGURE 3.56: Entry Global Properties in the Context Menu of the project name in the Project View.

The entry Global Properties allows to edit the Project Settings, including the item size (Presentation height and Presentation width) for an existing CBA ItemBuilder Project File (see Figure 3.57).

[image: *Project Settings* to change the *CBA Presentation Size*.]

FIGURE 3.57: Project Settings to change the CBA Presentation Size.

The CBA Presentation Size and the size of pages defined as Width and Height property of the top-level container used as frame (see section 3.5.1) must fit each other so that no scrollbars appear. The critical factor here is whether an xPage Layout has been defined.

	No xPage Layout: The required size of an item results from the width of the Frame and the Border Width of the Frame. Accordingly, the CBA Presentation Size must match the Frame Size plus two times the Border Width to avoid scrollbars (see upper part of Figure 3.58).

[image: Schema for components of the *CBA Presentation Size*.]

FIGURE 3.58: Schema for components of the CBA Presentation Size.

	xPage Layout: If an xPage layout is enabled, then the CBA Presentation Size must be sufficient to span the Frame of the regular page and the Frame of the xPage. In addition, two times the Border Width of the page, two times the Border Width of the xPage and the width of the slider (if Allow resize is selected) must be taken into account (see lower part in Figure 3.58).

The size of a page is equal to the size of the Frame plus two times the width of the border (Border Width property of the Frame).

If a non-zero width of the slider (Slider width, see Figure 3.54) is set in an xPage layout, then the available size for the regular page is reduced.

3.6.3 Navigation Witin and Between Tasks

The CBA ItemBuilder provides with the concept of Tasks a way to structure assessment components into parts. Tasks allow the organization of assessments through the use of one or more CBA ItemBuilder Project Files.

Tasks as Entities: Tasks represent the smallest entity that must remain together in test deployments. In this sense, Tasks provide the Entry Points into assessment components created with the CBA ItemBuilder, consisting of one or more pages. A Task can contain a non-interactive page that provides information or instruction only, a page with a single item, a page filled with multiple items, or even a complete unit or an entire test. Each Task is part of a CBA ItemBuilder Project File, and Project Files must contain at least one Task, but can also provide many Tasks.

The navigation within Tasks can be freely designed by the item author. Navigation between Tasks is done by the execution environment.

The assembly of assessment components into tests is handled by the software used for test delivery (see Chapter 7).

Multiple Tasks in the Preview : If several Tasks are defined within a Project File, then a linear sequence of Tasks can be viewed in the Preview of the CBA ItemBuilder. The navigation from one Task to the next or previous Task is triggered with so-called Runtime Commands (see section 3.12). Figure 3.59 illustrates the navigation in a linear sequence of Tasks using different layouts.

[image: Example for navigation with *Runtime Commands* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/XPageAndTasksExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/XPageAndTasksExample.zip)).]

FIGURE 3.59: Example for navigation with Runtime Commands (html|ib).

The order in which Tasks of a Project File are displayed in the Preview corresponds to the order in the Task Editor.

Test Deployment Software: A list of CBA ItemBuilder Project Files with the Tasks as entry point then forms the Item Pool, which can be used for different test designs. If the Tasks are administered in a specific order one after the other, a fixed form test is the result. When several different sequences are combined into rotations, the result is en booklet design. If single or multiple tasks are selected depending on previous answers, forms of adaptive testing can be implemented.

Division of Content to Tasks: Using multiple Tasks within one Project Files allows re-using designed pages but requires additional considerations to ensure that the Tasks are independent. Dependencies can arise based on links (see section 3.11) and conditional links (see section 4.3), runtime commands (see section 3.12), the finite-state machine (see section 4.4), FSM variables (see section 4.2), and task initialization (see section 4.5). The issue of splitting content between different Tasks and different Project Files is discussed in section 8.2).

3.7 Layout Pages using Components

Pages are designed in the CBA ItemBuilder Page Editor within components of types Frame (see section 3.5.1) and a Panel (see section 3.5.2). Page content is usually added to Panels by selecting a particular component from the Palette and drawing a rectangular in the Drawing Area of Page Editor. Before the different components for designing static content are described in detail, this section first contains general notes that are intended to make working with the CBA ItemBuilder easier.

Adding Components: Before a component can be added to a Page, the Page must be opened first. To add a new element to the Drawing Area of an opened Page, first select the component into which the new element should be included. If a Page was created with Frame and Panel (the default), select the Panel as the container. After the container is selected, the Palette shows all components that can be added to this container. Select the component from the Palette (the Palette will only show entries that can be selected for the current selected element). Afterwards, draw a rectangle in the main area (click into the Drawing Area within the component that should contain the new component, hold the left mouse button pressed, move the mouse so that a small rectangle appears and release the mouse button at the opposite corner of rectangle).

Undo/Redo Actions: Changes in the Page Editor and in the Properties view can be undone with Ctrl+Z (or Strg+Z,) respectively and redone with Ctrl+Y (or Strg+Y, , see also Figure 3.60).

[image: *Main Menu* `Edit` showing `Undo` and `Redo`.]

FIGURE 3.60: Main Menu Edit showing Undo and Redo.

If the Project File is saved, previous editing steps cannot be undone.

If it is configured in the settings, that a project is saved with each preview (see section 1.4.2), no changes can be undone afterwards.

3.7.1 Positioning of Components

Within the Drawing Area of the Page Editor components can be positioned freely and precisely defined by integer-values used as coordinates.

Visual Editing: The CBA ItemBuilder allows to move components in the Page Editor for visual editing with the pointing devide (e.g., mouse) and keyboard. To do this, the components must be clicked with the left mouse button and moved with the mouse button pressed. Moving components is only possible if, on the one hand, the text property of the component is not in edit mode (see Table 3.6). Components can be moved and re-sized using the anchor-points in the Page Editor. If the Snap To Grid feature is activated (Rulers & Grid in the Properties view described in section 3.1.4), the components will snap to the defined grid. Press the Alt key to move components freely. Selected components can also be moved using the arrow keys.

TABLE 3.6: Visual feedback (mouse pointer) in the Page Editor.

	Visualization
	Description


	~~~ 
	The component selected in the Palette can be added by left-click in the Page Editor and moving the mouse to draw a rectangle, before releasing the mouse.



	~~~ 
	Visualization of adding a component (left mouse-button pressed). The size of the component is defined as the gray rectangle. Releasing the mouse to finally add the component to the page.


	~~~ 
	Visualization of the information, that the selected component cannot be placed into the current context. Select a different component or draw the component into the appropriate container to continue.



	~~~ 
	Component can be moved while holding the left mouse button pressed. Use the Alt-key if Snap To Grid is activated.


	~~~ 
	Height of the component can be changed by clicking and moving the mouse while holding the left mouse button pressed.



	~~~ 
	Width of the component can be changed by clicking and moving the mouse while holding the left mouse button pressed.


	~~~ 
	The Width and Height of the component can be changed by clicking and moving the mouse while holding the left mouse button pressed.



	~~~ 
	Lasso used to select one or multiple components. Click on an empty place in the Drawing Area of the Page Editor and move the mouse while keeping the left mouse button pressed to use this feature.


	~~~ 
	Edit mode of the text property is activated. Select another component in the Page Editor (or use the Esc-key) to close this mode.





Positioning Using the Property View: Components selected in the Page Editor can also be moved by changing the values of the coordinates X and Y as well as the values for Width and Height in the Properties view (see Figure 3.61 for an example).


[image: Section `Position` of the *Properties* view.]

FIGURE 3.61: Section Position of the Properties view.






The left upper corner of all containers (Frames, Panels, RadioButtonGroups, …) is defined as X: 0 and Y: 0. Accordingly, increasing the X-coordinate of a component will move it to the right, and increasing the Y-coordinate of a component will move it down.


In the Page Editor, scrollbars are displayed when components stick out beyond their container’s boundaries. Such a case may occur when negative X or Y coordinates are configured or when the total size (relative to X and Y) exceeds the container’s size.



Note that scrollbars in the Page Editor appear if a nested component perfectly fits into its container (i.e., if Width or Height of a nested component are identical to Width or Height of the container). Use the Preview to verify that the final layout matches the expectations.


For editing components in the Page Editor, it can be helpful to change the zoom setting of the Page Editor. Suppose components are perfectly overlapping or exactly nested. In that case, components can be selected using the Component Edit view (see section 3.1.2). After selecting a component in the Component Edit, it is possible to adjust the coordinates in the Properties view so that they can be selected and edited in the Page Editor again.

Group Components using Panels: Components of type Panels can be used for different purposes. Firstly, at least one Panel is required within the ´Frame´ from a technical perspective. Secondly, Panels can be used for layout purposes, for instance to create space needed for margins, to show a border (see section 3.1.4) or a background image (see section 3.10.2). However, Panels can also used to group components. X and Y-coordinates of components nested within a Panel are defined relative to the left upper corner of the Panel.



To group components that have already been placed on a page together into a Panel, the components can be dragged and dropped in the Page Editor into the Panel.


[Issue 20]


3.7.2 Clipboard and Duplication of Components

One of the challenges for new users of the CBA ItemBuilder is the use of the clipboard. The Page Editor of the CBA ItemBuilder uses components of different types. Since components of a specific type can only embed other components of particular types, using the clipboard requires some comments.

Duplicate: Within pages, components can be selected and duplicated via the context menu. To select multiple components, Lasso-selection feature of the Page Editor can be used (see Table 3.6). Similarly, components that are grouped, for instance, within a Panel (see section 3.7.1) can be duplicated together. Figure 3.62 shows the context menu for a selection of multiple elements.


[image: *Context menu* for a selection in the *Page Editor* showing the entry `Duplicate`.]

FIGURE 3.62: Context menu for a selection in the Page Editor showing the entry Duplicate.




 

The function to duplicate components is equivalent to executing Ctrl+C and Ctrl+V (or Strg+C and Strg+V) directly one after the other. The duplicated elements are added again in the same context and moved by 10 pixel in both X and Y. If components are grouped in a Panel, they can be easily aligned together after duplication. Otherwise, the duplicated components must be moved individually to the final location.

 

View Clipboard: Single components with or without nested components can be copied, using the Ctrl+C, the context menu entry Edit > Copy or the main menu entry Edit > Copy. The copy operation is available, after the component was selected in the Page Editor.



To support the use of the clipboard while maintaining the required nesting of components, the CBA ItemBuilder provides a specific View Clipboard.




Elements the are added to the clipboard are shown in the View Clipboard (see Figure 3.63), together with the information, which components in the Page Editor can be selected when requesting a Paste operation (Ctrl+V or Edit > Paste). Multiple components can be used in the clipboard, and the clipboard remains active even after closing and opening a different project file.


[image: *View Clipboard* illustrating the visualization of elements in the clipboard.]

FIGURE 3.63: View Clipboard illustrating the visualization of elements in the clipboard.




Note that if the components are selected in the Component Edit (see subsection 3.1.2, it will be impossible to copy components until the components were selected (again) in the Page Editor.



Multiple Components: Duplicating elements with the context menu entry shown in Figure 3.62 is can handle multiple components at once, but is available only within pages. To copy multiple components across pages using the clipboard, components need to be nested into a single Panel. Note however, that if identical content is required on several pages, the concept of PageArea (see section 3.5.4) is often useful. If a complete page needs to be duplicated, this can also be achieved using Page Templates (see section 6.8.7).

[Issue 19]
[Issue 21]


Delete Components: The CBA ItemBuilder does not implement the Cut operation (i.e., Ctrl+X). To cut a selected component, copy the component first and use the context menu entry Delete from Model to delete the component, after it was added to the clipboard.



Remark: The clipboard of the CBA ItemBuilder will change in the next version (10.0). CBA ItemBuilder will allow to cut and paste components (including the nested components) maintaining the user-defined IDs.




3.7.3 Selecting Components using the Component View

In the Page Editor of the CBA ItemBuilder pages are designed within a component of type Frame. For this purpose, the components are selected in the Palette of the graphical Page Editor and then added within Containers. Within the Page Editor components are visualized with rectangles at the position defined with the X and Y coordinate and with a size that reflects the height and width of components. Position and size are either defined in the Properties view, the result of visual editing (i.e., using drag and drop in the Page Editor) or are computed by the CBA ItemBuilder (if the Layout Type=GRID is used in Auto-Layout-Panels, see subsection 3.5.3).

The various possibilities can all result in components being perfectly nested, making it impossible to select the underlying component in the Page Editor.



Components can always be selected using the Component View (i.e., even elements perfectly nested into their parents can be picked).


An example of the Component View is shown in Figure 3.64.


[image: *Component Edit* view allows to select any component in the *Page Editor*.]

FIGURE 3.64: Component Edit view allows to select any component in the Page Editor.




To allow the selection of all components defined in a page, the CBA ItemBuilder provides the Component View. In the Component View (see figure 3.64) all components can be seen in their hierarchical structure and can be selected. If a component is not seen, then in the Component View the tree can be expanded and the components can be shown. The selection of components in the Component View corresponds to the selection of components in the Page Editor and also allows access to the Context Menu as well as the Properties View.



3.7.4 Naming Components with UserDefinedIds


Components that are used to create and design pages in the Drawing Area of the Page Editor have an automatic generated string identifier (i.e., a generated number that uniquely identifies the particular instance of a component). This automatic generated identifier can be overwritten so that components have more meaningful, human-readable identifiers.

Importance of UserDefinedIds: UserDefinedIds are provided and assigned by the item author. For that purpose, each component that can be selected in the Page Editor provides the property UserDefinedId in the section Identification of the Properties view. UserDefinedIs are used to refer to the components, for instance, for the definition of conditional links (see section 4.3), to change properties of components using the Finite-State Machine (see section 4.4), and to specify scoring-rules a Task (see chapter 5). UserDefinedIds also plays a central role with regard to the interpretation of log and process data, since log events as an attribute refer to the components from which they originated via the UserDefinedId (see section 1.6).



UserDefinedIds are human-readable identifiers for components that are used to connect the visual part (Page Editor) with the syntax components of the CBA ItemBuilder.


The CBA ItemBuilder automatically generates IDs when saving Project Files, which start with a $ character, followed by a unique random number. When naming the component, i.e. when item authors as users def IDs (UserDefinedIds), these automatically generated identifiers must be replaced.

Valid UserDefinedIds: Since the UserDefinedIds are used to create source code (see section 2.11), the following conventions and rules must be followed:16


	Only letters, digits and underscores (_) are allowed as characters.

	Each UserDefinedId must start with a letter and it is not allowed to use a digit or underscore as the first character.

	UserDefinedIds are case sensitive and upper and lower case letters need to be distiguished.

	No spaces and blanks are allowed in UserDefinedIds.



To edit a UserDefinedIds for a component selected in the Page Editor, change the entry of the same name in the Properties view (see Figure 3.65).


[image: *Properties* view section `Identification` to define a `UserDefinedId`.]

FIGURE 3.65: Properties view section Identification to define a UserDefinedId.






UserDefinedIds are entered in the Identification section of the Properties view. The CBA ItemBuilder checks the validity and uniqueness of entered UserDefinedIds.


The CBA ItemBuilder automatically checks whether the entered UserDefinedId is already used for another component in the current CBA ItemBuilder project and provides an error message, if the UserDefinedId is already used or invalid, as shown in Figure 3.66.


[image: Message when a provided `User Defined Id` is not unique.]

FIGURE 3.66: Message when a provided User Defined Id is not unique.




If a component with a UserDefinedId is deleted, this UserDefinedId can only be assigned again after saving the current Project Files.

Edit Multiple UserDefinedIds: Since providing UserDefinedIds of many components via the graphical editor can be very time-consuming, the CBA ItemBuilder provides a dialog that allows the UserDefinedIds of several components to be entered in tabular form. For using this feature all other editors must first be closed (see Figure 3.67).


[image: Dialog informing requesting to close all editors before the requested operation can be executed.]

FIGURE 3.67: Dialog informing requesting to close all editors before the requested operation can be executed.






If there are no editors open in the main area of the CBA ItemBuilder, the entry Edit all user defined IDs can be opened via the main menu Project for an open Project File (see Figure 3.68).


[image:  *Main Menu* `Project` showing the entry `Edit all User Defined IDs`.]

FIGURE 3.68: Main Menu Project showing the entry Edit all User Defined IDs.




The editor shown in Figure 3.69 lists all elements together with the assigned UserDefinedIds. Rows with generated Defined IDs are shown in gray. Using this dialog UserDefinedIds can be edited for a particular component shown as row in the table using the button Edit (or double-click the row). To be able to assign the individual elements without the Page Editor, the component type and selected properties are also displayed in this dialog.


[image: Dialog to `Edit User Defined ID` of a *Project File*.]

FIGURE 3.69: Dialog to Edit User Defined ID of a Project File.




By clicking on a column in the table header, the elements can be sorted in the Edit User Defined IDs dialog shown in Figure 3.69.



Since the UserDefinedId is used for many different functions to connect components to syntax, it is recommended in larger CBA ItemBuilder projects to use a consistent naming scheme for all UserDefinedIds . A systematic naming schemes for the UserDefinedIds can reduce the error-proneness of scoring definitions for complex items (see chapter 5).




3.7.5 Design Pages with Basic Components

The visual design of assessment components with the CBA ItemBuilder is mainly done by using images (and images can be used with several components (see section 3.10.2).



Transparent Background: Transparent backgrounds of components can be defined with the property Transparent=true. In this case, the components do not hide components behind, which can, for instance, be designed using a component of type Panel with a linked (background) image.



Components (including components for displaying images, see section 6.2.1) and components for embedding external HTML content (ExternalPageFrames, see section 3.14.1) can be configured tob e transparent, allowing to apply designs based on images behind components.


Components can be defined as Transparent=true in the section Display of the Properties view. As described in the 6.2.1 section, the CBA ItemBuilder also supports transparency within images.

Borders and Background in Components: Components to collect responses, for instance, components for entering text responses (see section 3.9.1) should be easily to recognize by test-takers. Accordingly, they should be formatted and marked consistently. Background color or a border can be used to emphasize components, such as SingleLineInputFields and InputFields. The Border Width property must be set to a positive, non-zero width to define a visual border.

The frame color can be configured in the Appearance area of the Properties view using a color selection dialog (see section 3.1.4).

Rectangles and Lines: Beyond images, the CBA ItemBuilder provides Rectangles, Horizontal Lines and Vertical Lines as components to design items graphically. These components are also inserted with X, Y, Width and Height in the Page Editor. However, for components of type Line, the Width and Height is only relevant within the Page Editor. The Line Width property is used as a positive number to define the visual width of the line during runtime. Similarly, for components of type Rectanle also the Line Width property is used.


[image: Item illustrating components of type `Line` and `Rectangle` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/LineAndRectangleExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/LineAndRectangleExample.zip)).]

FIGURE 3.70: Item illustrating components of type Line and Rectangle (html|ib).




When components of type Rectangle are inserted late (i.e., when the item content is already added to the page) to create visual boundaries by frames, the rectangles are placed at the top of the editing order. In the Page Editor, it is then no longer possible to select underlying elements directly, but they must be selected with the help of the Component Edit (see section 3.1.2). Alternatively, the order in the Page Editor can also be adjusted using the context menu as shown in Figure 3.71. If the order has been changed (i.e., if a component of type Rectangle has been moved to the background in the editing order with Format > Order > Send to Back), then underlying components can be selected in the Page Editor.


[image: Context menu for design-time *Z-order* in the *Page Editor*.]

FIGURE 3.71: Context menu for design-time Z-order in the Page Editor.




It should be noted that the editing order does not influence the display order and the behavior of overlapping components at runtime (i.e., in the preview or the delivery of assessment composites created with the CBA ItemBuilder, see section 2.11.4). Moreover, components of type Rectangular can block the interaction with underlying components and prevent processing of assigned events (see section 6.8.5).



3.7.6 Defining the Cursor of Components

When components are displayed at runtime, the cursor (i.e., the mouse pointer) often hints at what can be done with that component. For example, a text input cursor (/text/) appears for elements into which text can be entered. Each component has a default cursor. As shown in Figure 3.72, the default cursor can be overridden in the CBA ItemBuilder.


[image: Item illustrating the use of custom `Cursors` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/CustomCursorExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/CustomCursorExample.zip)).]

FIGURE 3.72: Item illustrating the use of custom Cursors (html|ib).




To change the cursor for a component selected in the Page Editor, the entry Set Cursor can be selected in the context menu (see Figure 3.73).


[image: Context menu for defining the *Cursor* in the *Page Editor*.]

FIGURE 3.73: Context menu for defining the Cursor in the Page Editor.




In the dialog Set Cursor (see Figure 3.74) you can either select an element from the list of cursors, use an image imported into the ItemBuilder project via the Resource Browser (see section 3.10.1) or use the default cursor. If no cursor is to be displayed, then the entry /none/ can be selected as Cursor Type.


[image: Dialog *Set Cursor*.]

FIGURE 3.74: Dialog Set Cursor.








3.7.7 Defining the Tab-Order of Components



The Tab Index property in the Properties-view can be used to specify the order in which the input focus switches between components. Switching from one component to the next is possible with the Tab, if a positive integer number is defined for the Tab Index property.

The key combination Shift+Tab can be used to switch the focus back to the previous component (see Figure 3.75).The default value for the ‘Tab Index’ property is -1, and components with a Tab Index of -1 are not included in the tab sequence.


[image: Item illustrating the use of `Tab Index` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TabIndexExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TabIndexExample.zip)).]

FIGURE 3.75: Item illustrating the use of Tab Index (html|ib).







3.8 Components to Display Text



This section describes individual components for displaying text on pages designed with the CBA ItemBuilder. The components shown in Figure 3.76 can be added to containers of type Panel (on Simple Pages and Webchild Pages)17.


[image: Overview of components to display text.]

FIGURE 3.76: Overview of components to display text.




For adding static text to pages, the CBA ItemBuilder offers various components that differ in terms of design options and technical implementation. For all components for displaying text, you can restrict the list of available fonts, which is created in the CBA ItemBuilder based on the fonts installed on the system, to the fonts you require (see 6.8.2).


3.8.1 Text of Same Size: SimpleTextField



Text which should be displayed in a uniform font (i.e. the same font, font size and font color) can be added to a page using the SimpleTextField component. The configuration of the text is done by double-clicking on a SimpleTextField (or via the Edit Text entry in the context menu or the property Text in the Properties view).

The text defined for a component of type SimpleTextField can be single line or multi-line and the text is rendered with a vertical scroll bar if the text given the defined font size is larger than the defined size of the component. Not only the text can be modified using the property Text, also the font, the font size and the font color can be edited in the Appearance section of the Properties view (see Figure 3.77, and subsection 3.1.4).


[image: Section *Appearance* in the *Properties* view to define *Fonts and Main Colors*.]

FIGURE 3.77: Section Appearance in the Properties view to define Fonts and Main Colors.




Components of type SimpleTextField support the following values for the property Alignment in the section Appearance of the Properties view to configure the text alignment: LEFT, RIGHT, and CENTER. The item in Figure 3.78 illustrates the different components to display text.


[image: Example illustrating components to display text ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TextFieldOptionsExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TextFieldOptionsExample.zip)).]

FIGURE 3.78: Example illustrating components to display text (html|ib).




Clicks on SimpleTextFields during assessments are logged as Trace events of type SimpleTextField.



SimpleTextFields as Input Source: Components of type SimpleTextField can also be connected to a source (using the context menu entry Configure Input Source or the property Input Source in section Component Interaction of the Properties view), for example, to display the current page in a simulated web browser or the result of a calculation with the built-in calculator engine. To configure the Input Source of a SimpleTextField provide the context menu entry Configure Input Source to open the Input Source Configuration Editor (see Figure 3.79).

(ref:IBInputSourceConfiguration) Input Source Configuration Editor to define the Input Source of SimpleTextFields`.


[image: (ref:IBInputSourceConfiguration)]

FIGURE 3.79: (ref:IBInputSourceConfiguration)




The different options to specify the Input Source of a SimpleTextField are illustrated in the item shown in Figure 3.80.


[image: Item illustrating options to define *Input Source* for `SimpleTextFields` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/InputSourceExamples/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/InputSourceExamples.zip)).]

FIGURE 3.80: Item illustrating options to define Input Source for SimpleTextFields (html|ib).




The default is No Input Source, meaning that the SimpleTextField shows the text configured in the property Text. With the option Input Field components of type SimpleTextField can mirror the input provided into a InputField. To link both components internally, first select the option Input Field for the SimpleTextField using the dialog Input Source Configuration (see Figure 3.79). The configuration is completed after selecting the context menu entry Set Source Input at first for the SimpleTextField that should take the text entry (see left part in Figure 3.81) and then the context menu entry Set Target Input (see right part in Figure 3.81).

(ref:IBSetSourceInputAndSourceTarget1) Context menu entries to link components with the option Input Field.


[image: (ref:IBSetSourceInputAndSourceTarget1)]

FIGURE 3.81: (ref:IBSetSourceInputAndSourceTarget1)




The option Child Frame configures SimpleTextFieldss shows either the URL Text, the Page Description or the Tab Text of a web child page (see section 3.13.2). Finally, the options Calculation Engine Result and Calculation Engine Stack can be used to link the two outputs of the calculation engine to a SimpleTextField (see section 6.5.1).



3.8.2 Formated Text: HTMLTextField



Two additional components are provided to display text that can have different text formatting and multiple paragraphs. The HTMLTextField, which is described in this section, and the TextField, which is discussed in the next section.


[image: *HTML Text Editor* for the content of `HTMLTextField` components.]

FIGURE 3.82: HTML Text Editor for the content of HTMLTextField components.






HTML Text Editor: Various options for formatting text are provided by the HTMLTextField by the HTML Text Editor.


	 Font family (see section 6.8.2 for more information about the available font families) and font size (defined inImages and Multimedia Components pixels) can be specified for the current selection of text in the HTML Text Editor.


	 Font color (see section 6.8.3 for more information about the definition of colors) and font decoration bold, italic and underline can be assigned to the current selection of text in the HTML Text Editor.


	 Text alignment (can be defined for each paragraph using the icons for left, center, right and justify18) is supported.


	 Rotation (defined in degrees from 0 to 360) can be used to rotate the entire content specified in an HTMLTextField.


	 Superscript (asupera^{super}) and subscript (asuba_{sub}) can be formatted for selected texts.


	 Enumerations (numbered) and listings (bullet points) are supported.


	 Paragraph indentation can be controlled with in HTMLTextFields.






The visual representation of HTMLTextFields in the Page Editor of the CBA ItemBuilder is only provided to give item authors a rough orientation. This text is updated only when the HTML Text Editor is closed and is not re-created when the size of an HTMLTextField is changed. The Preview or the Renderer view allow to check the exact display of text in the final item.


Save or Discard: Changes in the HTML Text Editor require to save the new text using the Save and Close button (see Figure 3.82). Closing the editor via the small cross () in the title bar discards the changes.



Clipboard: To simplify the editing of longer texts in HTMLTextFields, the CBA ItemBuilder provides functions to copy, cut and paste text. These functions work in addition to the usual keyboard shortcuts: 



Links: Beyond the formatting of text, individual sections of text in HTMLTextFields can be defined as embedded links, which can then refer to other pages within the CBA ItemBuilder project (see 3.11 for a description of the concept of linking between pages in the CBA ItemBuilder:  The color used for links and visited links can be configured in the Project Settings (see section 6.3). As shown in the dialog in Figure 3.83, conditions for links can also be defined (see section 4.3 for details on Conditional Links).


[image: Dialog to *Configure Embedded Link* in `HTMLTextFields`.]

FIGURE 3.83: Dialog to Configure Embedded Link in HTMLTextFields.






3.8.3 Formated Text and Highlighting (TextField)



A second component for displaying differently formatted text is the TextField, which among other things supports highlighting.

Highlighting of Text: The CBA ItemBuilder supports the selection of characters and wordes as response format, labeled as Highlighting. Text highlighting is defined for components of type TextFields using the option Highlightable.



The following item in Figure 3.84 illustrates the text highlighting feature of the CBA ItemBuilder inspired by a PIAAC example (see OECD 2013).


[image: Example illustrating the use of text highlighting ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/HighlightingExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/HighlightingExample.zip)).]

FIGURE 3.84: Example illustrating the use of text highlighting (html|ib).




Note that the buttons Green and Red illustrate the used of multiple colors for text highlighting (see subsection 4.4.6 for details, the default color can be configured as Global Property, see section 6.3). More details on the use of text highlighting as response format (and, in particular, scoring of text highlighting) can be found in section 5.3.8. Using components of type ImageAreas within so-called ImageMaps (see section 3.9.10) also allows the selection of predefined parts within images.

 

Mathematical Formulas: The TextField component allows to add formulas using the MathJax-syntax, as shown Figure 3.85.


[image: Example illustrating the use of text MathJax ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/MathJaxExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/MathJaxExample.zip)).]

FIGURE 3.85: Example illustrating the use of text MathJax (html|ib).




To display a formula using MathJax in components of type TextField, the formulas must be entered between the two character keys {tex} and {/tex} in LaTeX format. The following fraction 112\frac{1}{\frac{1}{2}} is created by the syntax:

{tex}\sqrt{\frac{1}{\frac{1}{2}}}{/tex}




3.8.4 Comparison of Components for Displaying Text



This section has described various components that can be used to represent text in assessment components and items. This surely leads to the question of which component should be used in which specific context. The answer to when to use aSimpleTextField, an HTMLTextField or a TextField depends on the required features. Table 3.7 summarizes the features of the different components to guide the selection.


TABLE 3.7: Comparison of components to display text


	Feature
	HTMLTextField
	TextField
	SimpleTextField





	Allows text highlighting
	no
	yes
	no



	Shows scrollbars automatically
	no
	no
	yes



	Allows justified text
	yes
	yes
	no



	Can be selectable
	yes
	no
	no



	Allows links
	yes
	yes
	no



	Allows images
	no
	yes
	no



	Allows formulas
	no
	yes
	no



	Can be rotated
	yes
	no
	no





Note that components of type TextField are also used in the Table component of the CBA ItemBuilder (see subsection 3.9.8).

Other Components: Components of type Link can also display text (see section 3.11.1). Moreover, components of type SingleLineInputField described in the next section for capturing text responses can be used to display text using the property ReadOnly: true. Values of Variables (including STRING variables) can be shown using components of type VariableValueDisplay (see section 4.2.3), and values of Variables that are translated to text using a Value Maps can also be used to show texts using components of type MapBasedVariableDisplays (see section 4.2.5).




3.9 Components to Collect Responses





The CBA ItemBuilder provides a variety of components that can be used to capture answers to questions and items. This section presents the various simple components that can be used for directly for designing static content (see Figure 3.86 for an overview).

Basic Components: First, two components for capturing text responses are described (see section 3.9.1). After that, components that can be used to capture click responses are described. Creating multiple-choice or single-choice response formats is possible, for instance, with components of type RadioButton with (and without) RadioButtonGrups (see section 3.9.2). Multiple-Choice items can also be created, for instance, using ‘Checkboxes’ (see section 3.9.3). Single and multiple selection of presented response alternatives is also possible with the Combobox (single-choice) and List components (single- and multiple-choice, see section 3.9.5). Finally, selection within images can be implemented with components of type ImageMap to collect responses (section 3.9.10).


[image: Overview of components to collect responses.]

FIGURE 3.86: Overview of components to collect responses.




Advanced Components: Beyond text and click responses shown in Figure 3.86, the CBA ItemBuilder provides components that can be used to create advanced response formats (see, for instance, section 3.13 for components of type Table, Menu and Tree, that can be combined with simple click response-formats). Moreover, selectable components (see section 3.9.6) can be used to collect click responses. Finally, the combination of multiple pages connected via links and conditional links, FSM Variables, and Finite-State Machines with simple and advanced response-formats allows creating complex items that create traces of task processing that can be used for advanced scoring schemes.


3.9.1 Components for Text Responses



Components for capturing text responses are simply input fields in which text can be entered when they are focused. To focus an input field the test taker must click in the input field, or the focus is set automatically with the focus()-operator (see section 4.4.6).

As shown in Figure 3.86, the CBA ItemBuilder distinguishes mainly two components for capturing text responses.


[image: Example illustrating components to collect text responses ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/InputFieldAndSingleLineInputFieldExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/InputFieldAndSingleLineInputFieldExample.zip)).]

FIGURE 3.87: Example illustrating components to collect text responses (html|ib).




Single Line Text Input (SingleLineInputField): The component for single-line text input is called SingleLineInputField. Line breaks (with the Enter or Return key) are not accepted by SingleLineInputField (i.e., only one single line can be used).

Multiline Text Input (InputField): For multiline text input, the CBA ItemBuilder provides the InputField component. Line breaks (with the Enter or Return key) are possible and scrollbars appear, if the text height becomes larger than the height of the InputField component.

Properties of SingleLineInputField and InputField: Both components can be configured and used in identical ways (see Figure 3.87). SingleLineInputField and InputField can be used within Panels on Simple Pages and WebChild Pages. SingleLineInputField can also be used within WebBrowserToolbars on WebBrowser Pages.



A border or background color must be configured to recognize components of type SingeLineInputField and InputField as elements of an item or page that allows text input (see last row in Figure 3.87).


Font size and font family can be configured in the tab Appearance in the Properties view (see Figrue 3.5 in section 3.1.4). Components of type InputField and SingleLineInputField support the following values for the property Alignment in the section Appearance of the Properties view to configure the text alignment: LEFT, RIGHT, and CENTER.

[Issue 23]
Components of type SingleLineInputFields and InputFields support the Read Only property. If the value true is specified in the Properties view in section Misc, the text cannot be changed. The components then behave like SimpleTextFields (see section 3.8.1) with the difference, that the text can be selected.

[Issue 24]
All response capture components support the Frozen property, which locks the components for editing. Figure 3.87 shows how type SingleLineInputFields and InputFields components are displayed when Is Frozen: true is configured in the Misc section of the Properties view. The Frozen-property can also be modified using the operators setFrozen() / unsetFrozen() in Conditional Links and transitions triggered in the Finite-State Machine (see section 4.4.6).

Text color for InputField can be defined in the tab Appearance of the Properties view. By default the Link Color as defined in the in the Global Properties of a CBA ItemBuilder project file (see section 6.3) is used for SingleLineInputFields. To use the text color specified in the tab Appearance of the Properties view, the property Use Default Link Color needs to be specified as false. Note that the property Use Default Link Color might be invisible, until the filter Show Advanced Properties as shown in Figure 3.88 is clicked.


[image: Filter `Show Advanced Properties` of the *Properties* view.]

FIGURE 3.88: Filter Show Advanced Properties of the Properties view.




The length of the text that can be entered, as well as the characters that can be used, can be configured using regular expressions in the Misc section of the Properties view via the Input Validation Pattern property (see section 6.1.3 for examples). The two components for collecting text responses can raise FSM events (see section 4.4.3) when the text field receives input focus (Raised In Event) and when input focus is removed from the text field (Raised Out Event). If inputs are not accepted due to a regular expression, the Input Validation Event is triggered. The FSM events can be linked to the components using the context menu entries Link Raised In Event, Link Raised Out Event, and Link Input Validation Event.



The CBA ItemBuilder can be use to score text-entry tasks using regular expressions (see section 6.1.2), resulting in a score variable that can indicate if an expected answer was provided. The raw response to one or multiple SingleLineInputFields or InputFields can be copied to an additional variable using the result_text()-operator (see section 5.3.10 for details).


Components of type SingleLineInputFields and InputFields create Trace events of type SingleLineInputField and InputFields (when the input field is focused) and SingleLineInputFieldModified and InputFieldModified (when the text is changed), that are stored in the log data.19




3.9.2 Single-Choice Responses: RadioButtonGroup and RadioButtons

Even for simple item formats like single-choice and multiple-choice the item design (e.g., the affordance rendered by different item designs) can impact psychometric properties. This was, for instance, investigated by Moon et al. (2019, see Figure 3.89).


[image: Figure 1 from Moon et al. (2019) illustrating different item formats ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/MoonEtAl2019ExampleItemsFigure1/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/MoonEtAl2019ExampleItemsFigure1.zip)).]

FIGURE 3.89: Figure 1 from Moon et al. (2019) illustrating different item formats (html|ib).




 

The creation of single-choice tasks is often done in computer-based assessment with components of the type RadioButton, while multiple-choice is usually implemented using Checkboxes (see subsection 3.9.3).



Usually, the representation of components to provide click-responses are either round (called RadioButtons for single-choice) or rectangular (called Checkbox for multiple-choice). The CBA ItemBuilder follows this distinction, but also provides Frame Select Groups to define the behavior in more detail (see section 3.9.4).


As seen in Figure 3.86, RadioButtons in the CBA ItemBuilder are often not placed directly on pages within Panels. Instead, to insert RadioButtons in the Page Editor of a page, a component of type RadioButtonGroup can be used as container to create a group of related RadioButtons.

To add a RadioButtonGroup first be selected in the Palette () and drawn in the Drawing Area (and then, if necessary, positioned and adjusted using the coordinates X and Y as well as the properties Width and Height in the Properties view). The item shown in Figure 3.90 illustrates the use of RadioBottons within RadioButtonGroups and the properties IsTransparent and BorderWidth.


[image: Item illustrating `RadioButtons` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/RadioButtonExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/RadioButtonExample.zip)).]

FIGURE 3.90: Item illustrating RadioButtons (html|ib).




RadioButtonGroup: RaidoButtonGroups perform two functions. RadioButtonGroups are indispensable when used as response format n the CBA ItemBuilder to organize the membership of RadioButtons to groups. All RadioButtons that are nested in a RadioButtonGroup form a common group. Exactly one RadioButton per group can be selected. By default (i.e., before a RadioButton of a group is clicked), no RadioButton is selected. Accordingly, a missing answers can be identified reliably. Once a RadioButton is selected, this selection can only be changed, but not undone. The second function of RadioButtonGroups concerns the graphical design. Using Border Width and background color for RadioButtonGroups with the property Is Transparent:false, RadioButtonGroups can be used to visualize how RadioButtons belong together. Alternatively, additional components can be used to design pages (see section 3.7.5), for example, to insert a background image. RadioButtonGroup can be added to Panels on Simple Pages and WebChild Pages.

RadioButton: The actual component for the single choice response format is RadioButtons. Each RadioButton represents a selectable option, which is represented with a label text (and an optional image). After selecting a RadioButtonGroup in the Drawing Area of the Page Editor only the icon RadioButton () can be selected in the Palette. RadioButtons can only be added to RadioButtonGroups. Once the icon RadioButton is selected in the Palette, a RadioButton can be added to the RadioButtonGroup. This is done by clicking inside of the RadioButtonGroup, followed by a mouse-move with pressed left mouse button. Use the zoom feature (see section 3.1.1), if the RadioButtonGroup is small. Coordinates X and Y can be changed in section Position of the Properties view, but coordinates are specified relate to the origin (i.e., the upper left corner) of the RadioButtonGroup.

Properties of RadioButton: The size of RadioButton defined using Width and Height property must include the size for the label, that will appear for right-to-left languages right to the RadioButton. The label can be defined using the Text Property of RadioButtons, with font settings configured in the tab Appearance of the Property Grid. The label can be a single word, a multiline text (using the property Text Wrap: true) or a simple linked images, as shown in Figure 3.111 in section 3.10. If the property Use status image: true in the section Misc of the Property Grid is configured, two images (Activated Image and Pressed Image) can be used to distinguish two images as label for RadioButtons.

RadioButtons can have Background Color (if Is Transparent:false) and border with nonzero Border Width. Using the context menu entry Set Selected Background Color (or entering a color number directly into the property Selected Background Color in section Misc of the Property Grid, see section 6.8.3 for more information about CBA ItemBuilder color codes) allows to define the background color used when a particular RadioButton is the selected (single) choice.



The Text Property provided by RadioButtons results in labels for Single-Choice response formats that are click-sensitive. If necessary, Conditional Links or the Finite-State Machine can be used to make additional components (such as HTMLTextFields) click-sensitive for RadioButtons (see section 6.4.8).


Radiobuttons can trigger Events when they are clicked to connect the static content with the dynamic parts of CBA ItemBuilder Tasks that are based on Finite-State Machines. For this purpose, a defined Event (see section 4.4.3) can be configured via the context menu and the entry Link Raised Event or in section Component Interaction of the Properties view (property Raised Event). For advanced uses, a second event name can also be defined only in the Properties view for the property Raised Alternate Event. While the Raised Event is triggered when a RadioButton is selected, the second Event (Raised Alternate Event) is triggered when an already selected RadioButton is pressed. From the Finite-State Machine (i.e., when a transition is triggered by a event, see section 4.4.4) or using a Conditional Link (see section 4.3.3), a RadioButton can be selected with the setActive()-operator (see section 4.4.6 for details).



For scoring single-choice tasks, the raw response of a RadioButtonGroup corresponds to a variable whose value represents the selected RadioButton. In addition, a Score variable can be defined, which indicates whether the correct ‘RadioButton(s)’ has (have) been selected (see section 5.3.2 for details).


Components of type RadioButtonGroup create Trace events of type Container (when clicked). Selecting RadioButtons results in a log event of type RadioButton with an attribute oldSelected that informs about the previous state of clicked RadioButton.



3.9.3 Multiple-Choice Responses: Checkbox



In order to convert multiple-choice answer formats with the help of the CBA ItemBuilder, the Checkbox can be used as a basic component. Checkboxes can be added to Panels, as shown in Figure 3.86. Each Checkbox can be selected and deselected.



For scoring multiple-choice tasks, the raw response of each Checkbox creates its own variable whose value represents the information if that particular Checkbox was selected. In addition, a Score variable can be defined which indicates whether particular pattern of multiple Checkboxes has been selected (see section 5.3.2 for details).


To add a Checkbox, first select a Panel in the Drawing Area of the Page Editor. If a Panel is selected, the icon Checkbox () can be selected in the Palette. To place the Checkbox, click into the Panel and move the mouse while keeping the left mouse button pressed.

Properties of Checkboxes: The position of Checkboxes can be precisely defined using the section Position of the Properties view. The size of Checkboxes must include the space required for the text label, that is displayed next to the Checkbox (on the right side for right-to-left languages). The label text can be defined by double-clicking on the Checkbox, using the context menu entry Edit Text or directly in the Properties view in section Text. Font and font size of the Checkbox labels can be configured using the Appearance tab of the Properties view. Analogous to RadioButtons, a background color for selected Checkboxes can be defined (property Selected Background Color or context menu entry Set Selected Background) in addition to borders (nonzero Border Width) and the background color.

[Issue 26]


The Text Property provided by Checkboxes results in labels for Multiple-Choice response formats that are click-sensitive. If necessary, Conditional Links or the Finite-State Machine can be used to make additional components (such as HTMLTextFields) click-sensitive for Checkboxes (see section 6.4.8).


Components of type Checkbox can be linked to two different Events. The context menu entry Link Select Event allows to assign an Event that is triggered, when the Checkbox is selected, the entry Link Deselect Event can assign an Event for deselecting the Checkbox.

Components of type Checkbox create Trace events of type Checkbox for the log data, that provide the attribute oldSelected to informs about the previous state of the Checkbox.

Simple and Complex Multiple-Choice response formats or Multiple-True-False items can be created by using components of type RadioButtonGroups and RadioButton (see section 3.9.2). However, since the use of RadioButtonGroups is not possible in combination with Auto Layout-Panels (see section 3.5.3), Frame Select Groups can also be used to define single- and multiple-choice response formats (see section 3.9.4).



More advanced Single-Choice and Multiple-Choice response formats can be implemented using the dynamic features of the CBA ItemBuilder (see, for example, section 6.4.9).



3.9.4 Single- or Multiple-Choice using Frame Select Groups

 

Using RadioButtonGroups to structure and group RadiouButtons has a conceptual problem: RadiouButtons of a group cannot be distributed across different containers, such as Panels. This problem is solved by so called Frame Select Groups. Frame Select Groups are groups defined at the Frame-level for RadioButtons, Checkboxes (and Toggle-Buttons) that specify the membership of these components in a group for click responses. Frame Select Groups can be created via the Configure Select Groups dialog, which can be called from the context menu of the Frame of a page. As shown in figure 3.91, this dialog can be invoked via the Component Edit by right-clicking on the Frame.


[image: Context menu to *Configure Select Groups* in the *Component Edit*.]

FIGURE 3.91: Context menu to Configure Select Groups in the Component Edit.




Frame Select Groups can be used together with Auto Layout-Panels (see section 3.5.3) to group components of type Checkbox, RadioButton or Toggle-Button into groups. Groups define the three important properties, that define Single- or Multiple-Choice response formats as groups (Frame Select Groups), instead of using RadioButtonGroups:


	Selectable: Can user interactions (i.e. clicks) on the components change the selection?

	Multiple Select: Is it possible to select more than one component of this group?

	No Deselect: Is an already selected component de-selected, if it is clicked again?



After right clicking the Frame of a page in the Component Edit (see subsection 3.1.2) the entry Configure Select Group opens the editor shown in Figure 3.92.


[image: *Configure Select Groups* dialog to define *Frame Select Groups*.]

FIGURE 3.92: Configure Select Groups dialog to define Frame Select Groups.




Frame Select Groups are addressed by their index. I.e. in each Frame multiple groups can be created, and each component is then assigned to a group by entering the index (starting with 0) in the Properties-view of a component. In Figure 3.92, 9 different groups are defined. All components belonging to each group are assigned to the same index (see the property Frame Select Group in section Misc in Figure 3.93).


[image: Assignment of a component to a *Frame Select Group* in the *Properties*-view.]

FIGURE 3.93: Assignment of a component to a Frame Select Group in the Properties-view.




The assignment of components to a previously defined Frame Select Group is defined by entering the number in the Properties-view, as shown in Figure 3.93. The meaning of the three properties (Selectable, Multiple Select and No Deselect) can be inspected with the example illustrated in Figure 3.94.


[image: Item illustrating the use of `Frame Select Groups` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SingleAndMultipleChoiceUsingSelectGroupsExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SingleAndMultipleChoiceUsingSelectGroupsExample.zip)).]

FIGURE 3.94: Item illustrating the use of Frame Select Groups (html|ib).






3.9.5 Single- or Multiple-Choice using ComboBoxes and Lists

 

The CBA ItemBuilder provides two additional components for creating single and multiple selections of existing elements. Both components can be added to Panels (see Figure 3.86). ComboBoxes can be used to implement Single-Choice response formats. Only one element can be selected from each Dropdown-list. Lists support single- and multiple-choice using the property Multiple Select Mode. When closed, ComboBoxes display only the selected element, while Lists show all available elements within the available space. ComboBoxes require scrollbars for the selection of an item if the list of defined Combobox Items cannot be shown simultaneously on screen (and the CBA ItemBuilder provides the property Visible Item Count to control how many items are displayed during the selection before scrolling is required. With the configuration Visible Item Count: 0 (default) as many items as possible are displayed). Lists show scrollbars, if the size of the List-component is to small to show all elements (see Figure 3.95).

[Issue 34]

[image: Item illustrating `ComboBoxes` and `Lists` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ComboboxAndListExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ComboboxAndListExample.zip)).]

FIGURE 3.95: Item illustrating ComboBoxes and Lists (html|ib).




Components of type ComboBox and List are containers for entries added in the form of ComboBox Item (for ComboBoxes) ListItem (for Lists).

 

 

 



Entries of ComoBoxes (ComboBox Items) and Lists (List Items) are not displayed individually in the Page Editor and can only be edited via the Component Edit (see section 3.1.2).


[Issue 27]
To add an item to the ComboBox, the context menu (right-click a component of type ComboBox in the Page Editor) must be used, which contains the entry Add Combo Box Item as shown in Figure 3.96 (the analog entry is called Add List Item for components of type List).


[image: Context menu for `ComboBoxes` in the *Page Editor*.]

FIGURE 3.96: Context menu for ComboBoxes in the Page Editor.




After a new item has been created via the context menu, the central properties can be edited in the Add Combo Box Item dialog (see Figure 3.97). However, Text, UserDefinedId and Mouse Over Text can of course also be changed via the Properties view.


[image: Dialog to configure a component of type `ComboBoxItem`.]

FIGURE 3.97: Dialog to configure a component of type ComboBoxItem.




To be able to edit an item of a ComboBox (or List), the ComboBox must first be selected as a container in the Drawing Area of the Page Editor. All defined items will then be displayed in the Component Edit section. To change the Text Property, the UserDefinedId or the Mouse Over Text the context menu in the Component Edit contains the entry Set Basic Attributes (see Figure 3.98). The context menu also contains the entry Link Page for defining a Link (see section 3.11) or a Conditional Link (see section 4.3).

[Issue 28]
Using the entry Link Raised Event that is part of the context menu when a ComboBox Item or List Item in the Component Edit are clicked with the right mouse button, FSM Events can be added that are triggered when the item is clicked.

[Issue 32]
Comobox-items provide the context menu entry Link Image that is currently not working as expected.

[Issue 33]
To delete an item in the Component View, the context menu entry ‘Delete Item’ can be used (see Figure 3.98).


[image: Context menu for `ComboboxItems` in the *Component Edit*.]

FIGURE 3.98: Context menu for ComboboxItems in the Component Edit.




Moreover, the context menu of items in the Component Edit also allow to open the Properties view.

The formatting of entries in ComboBoxes and Lists is uniform for all items via the properties in the Appearances tab of the Properties view. A border is only displayed if a non-zero Border Width is defined.

The SetFrozen()-operator and the property Is Frozen is currently not working for ComboBoxes and not supported for Lists.

[Issue 30]
[Issue 31]
If entries in a ComboBox are selected a log entry ComboBox is written into the Trace data. If an entry is selected within a List, this can be traced by means of the entry List Item in the log data.



3.9.6 Selectable Components in Panels or ImageMaps

In addition to specific components to collect click-responses, the CBA ItemBuilder allows to use additional components within Panels or ImageMaps to be selected.

Selectable Components: Different components such as HTMLTextFields provide the Selectable property, that can be used to allow components to be selected and de-selected by test-takers (). If several HTMLTextFields are placed within a Panel, then the selection of the component (e.g., the HTMLTextField) can be used to capture a click response. If the option Selectable: true is enabled (default setting is false), then the entire HTMLTextField can be selected by the test-taker at item runtime, as soon as the Selectable: true is also defined for the hosting Panel. Note that the Selectable-property is only visible if the icon Show Advanced Properties is clicked (see Figure 3.99).


[image: Advanced properties for `Panels` in the *Properties*-view to define `Selectable: true`.]

FIGURE 3.99: Advanced properties for Panels in the Properties-view to define Selectable: true.




Hosting Component: The selection of an HTMLTextField is done by clicking. The exact behavior of the selection can be defined as properties of the component, in which the selectable components (e.g., HTMLTextFields) are embedded (e.g., Panels). In addition to define Selectable: true, the Panel allows to define the additional properties No Deselect and Multiple Select Mode (see Figure 3.100 for illustrations).


[image: Item illustrating the `setInputValue()`-operator ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SelectableHTMLTextFieldsExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SelectableHTMLTextFieldsExample.zip)).]

FIGURE 3.100: Item illustrating the setInputValue()-operator (html|ib).




An already selected HTMLTextField can be unselected by clicking on it, if No Deselect: false . Selected HTMLTextFields are highlighted with the color that is stored in the global settings as Highlight Color (see section 6.3). The scoring of selectable components such as HTMLTextFields is described in section 5.3.2. Operators for finite-state machine and task initialization syntax to modify the selectable property of HTMLTextFields are described in section 4.4.6.

[Issue 22]


3.9.7 Single-Choices as MenuBar with Menu

A component for the implementation of Single-Choice tasks analogous to menus of computer programs is provided by the CBA ItemBuilder as MenuBar (see Figure 3.101).


[image: Item illustrating components of type `MenuBar` and `Menu` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/MenuBarAndMenuExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/MenuBarAndMenuExample.zip)).]

FIGURE 3.101: Item illustrating components of type MenuBar and Menu (html|ib).




MenuBar: Components of type MenuBar can also be used added to Panels on pages of type Web Browser within WebBrowserToolbar. To create a Single-choice selection as a menu, a Panel or a WebBrowserToolbar must first be selected in the Page Editor. This makes it possible to select the MenuBar icon in the Palette (). If MenuBar is selected in the Palette, a rectangle can be drawn within the Panel or within the WebBrowserToolbar by clicking with the left mouse button and moving the mouse with pressed mouse button. This rectangle represents the typically invisible border within which one or more menus can be placed. The position of the MenuBar can be set exactly via the Properties view (properties X, Y, Width and Height), as well as the border width and the border color (in the Appearance tab of the Properties view). Via the Properties view (property Raised Event in section Component Interaction) a FSM Event can be defined, which is triggered when a test-taker opens the MenuBar.

Menu: Unlike ComboBoxes and Lists, components of type MenuBar can provide multiple selections, which can be added to MenuBars as a component of type Menu. To add one or more Menu components to a MenuBar, the MenuBar must first be selected in the Page Editor. Then the icon Menu () is available in the Palette. After this icon is selected, a Menu can be added inside the MenuBar. The size With and Height can also be edited directly in the Properties view. The position X and Y is not relevant for Menu components and is hidden in the default view of the Properties view. 20

Components of type Menu are containers for entries added in the form of MenuItems (using the context menu Add Menu Item of Menus).

Entries of Menus (MenuItems) are not displayed individually in the Page Editor and can only be edited via the Component Edit (see section 3.1.2).


Images can be added to Menu-items using the context menu Link Image (or by entering the exact file name of the image resource added using the Resource Browser, see section 3.10.1, to the property Image Reference in section Display Images of the Properties view).

Menu-items can be used trigger Links (see section 3.11 for details) or Conditional Links (see section 4.3 for details), assigned using the context menu entry Link Page in the Component Edit. Moreover, Menu-items can trigger Commands (using the context menu entry Set Command, see section 3.12 for details) and FSM Events (using the context menu entry Link Rasied Event, see section 4.4.3 for details).



3.9.8 Collect Responses using Table and TableCellEditor

As shown in Figure 3.102, additional components can be added to Panels which are needed for the implementation of specific item concepts. This concerns the use of tables (as input format) and so-called Trees, which can be used to design user interfaces as part of CBA ItemBuilder items.


[image: Overview of components for special purposes.]

FIGURE 3.102: Overview of components for special purposes.




For the design of pages, the CBA ItemBuilder provides a Table component (see item in Figure 3.103 for an example).


[image: Item illustrating *Tables* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TableExamples/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TableExamples.zip)).]

FIGURE 3.103: Item illustrating Tables (html|ib).




Table: Tables can be used for different purposes. They can be used to arrange information on a page in tabular form. Tables can also be configured to mimic simple spreadsheet functions. After the place for a table has been defined in the Page Editor, tables can be initialized via the context menu and the entry Configure Table. When the dialog shown in Figure 3.104 is called for the first time, the type can be specified once. Besides the table type (Standard or Spreadsheet), the number of rows and columns and the default background color can be specified. These changes cannot be corrected once the dialog has been closed with OK.


[image: Dialog to configure `Table`-components.]

FIGURE 3.104: Dialog to configure Table-components.




After initializing a table, the table cells are automatically created and filled with components of type Text Field (see subsection 3.8.3 for more information). Note that height, width and position of table cells can only be changed manually in the Properties view once the table is created.

Table cells are TextFields to which an image (context menu entry Link Image) and a page as link (context menu entry Link Page) can also be assigned. As shown in Example 1 in the item illustrated in Figure 3.103, tables of type Standard can be configured to be Select enabled (wither single-choice or multiple-choice with the additional option Multiple Select, see Figure 3.104).

TableCellEditor: For tables of type Spreadsheet a component TableCellEditor is available, which enables the editing area of the currently selected cell, which is typical for spreadsheets (see figure 3.103). After adding a component of type TableCellEditor it can be assigned to a table configured as type SpreadSheet via the context menu entry Attach Table.



3.9.9 Collect Responses using Tree, TreeView and TreeChildArea

To create browsable folders with nested elements, the CBA ItemBuilder provides three components usually used together (see Figure 3.105 for an example):


	The Tree-component shows a tree, in which each element is represented by a label and the hierarchical structure is created at design-time by adding nodes in the Component Edit-view of the CBA ItemBuilder (see section 3.1.2).

	The TreeView-component that shows a list of all child-nodes of the node selected in the Tree.

	The TreeChildArea-component that can be used to display pages in a designated area (similar to PageAreas, see section 3.5.4), linked to the currently selected node in the Tree.




[image: Item illustrating *Trees* to collect click-responses ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TreeViewExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TreeViewExample.zip)).]

FIGURE 3.105: Item illustrating Trees to collect click-responses (html|ib).




Tree Configuration: The basic configuration of Trees is done in the Component Edit-view of the CBA ItemBuilder as shown in Figure 3.106. Each Tree-component provides three sections in that can be edited using the context menu. The section [Type] is used to define custome node types ([TreeNodeType]), for intsance, to specify the font properties for all nodes assigned to this type. Each node must be assigned to a node type. The actual nodes that are to be displayed in the Tree (and the child nodes in the TreeView) are defined in the section [Nodes]. The columns shown in the TreeView are user defined and created in the Component Edit-view in the section [Columns]. Each child node in the section [Columns] corresponds to one column in the TreeView.


[image: Configuration of `Tree`-component in the *Component Edit*-view.]

FIGURE 3.106: Configuration of Tree-component in the Component Edit-view.




The configuration of nodes is done using the context menu in the section [Nodes] using the Component Edit-view of a Tree-component, as shwon in Figure 3.107. Nodes are added using Add Tree Node and removed using Delete Tree Node. The node text (i.e., the displayed text in the Tree and TreeView-components), the Mouse Over text and the UserDefinedId are configured using the context menu entry Set Basic Attributes or by entering the values directly into the Properties-view.


[image: Context menue for `[Nodes]` in the *Component Edit*-view of a `Tree`-component.]

FIGURE 3.107: Context menue for [Nodes] in the Component Edit-view of a Tree-component.




Each node must be assigned to a node type using the entry Set Node Type. This requires to define at least one element in the section [Type], using the context menu entry Add Tree Node Type that is available via right-click on the element [Types] within the element [Tree] in the Component Edit-view. A node type is defined by a text, a UserDefinedId and an optional Mouse Over Text. Additional properties for nodes of that particular type can be defined in the Properties-view (e.g., details concering the text presentation are used when Use Tree Front: false).

TreeView Configuration: The Tree component and the TreeView-component need to be linked. To link a TreeView to a Tree, right-click on the TreeView-component in the Page Editor provides the context menu entry Set Tree. Since Tree and TreeView are linked, the selection of a component in the Tree and in the TreeView are synchronized (i.e., selecting a node in the Tree selects the corresponding nodde in the TreeView and vice-versa).

The data about selected nodes shown in the TreeView are values for the columns, defined for each node by selecting the context menu entry Set Column Values (see Figure 3.107). The values need to be entered in the dialog shown in Figure 3.108 according to the order in which the [Columns] are defined in the Tree-component.


[image: Edit values for `[Nodes]` shown in the `TreeView`-component.]

FIGURE 3.108: Edit values for [Nodes] shown in the TreeView-component.




Additional configurations (e.g., Sortable) can be specified in the Properties view of the TreeView-component.

TreeChildArea Configuration: The Tree component and the TreeChildArea-component need to be linked (similar to the TreeView as described above). Since Tree and TreeChildArea are linked, a child page can be linked to each node. When the node is selected in the Tree or the TreeView, the linked pages is shown in the TreeChildArea. Pages can be linked in the context menu of the Tree-component in the Component Edit view (see entry Link Page in Figure 3.106).




3.9.10 Graphical Single- or Multiple-Choice Formats using ImageMaps

Another component that can be used to computerize both Single- and Multiple-Choice response formats with the CBA ItemBuilder are ImageMaps. As the name suggests, these are images on which clickable areas can be defined. If the selection of a new clickable area deactivates an already selected area (Multiple Select Mode: false), then a Single-Choice response format is created. If additional elements are selected without deactivating already selected areas (Multiple Select Mode: true), a Multiple-Choice response format is created.

ImageMaps: ImageMaps that can be added to components of type Panel are shown in Figure 3.109).


[image: Item illustrating 'ImageMaps' ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ImageMapExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ImageMapExample.zip)).]

FIGURE 3.109: Item illustrating ‘ImageMaps’ (html|ib).




To add an ImageMap to a page, the Panel must first be selected. After that the entry ImageMap () is available in the Palette. If this icon is selected, it is possible to click inside a Panel in the Drawing Area of the Page Editor and draw a rectangle while holding down the mouse button. When releasing the left mouse button the ImageMap is added to the page. In the Properties view, the exact position and size of the ImageMap can then be adjusted in the Position section.

The graphical design of ImageMaps is usually done using a background image, which can be added using the context menu entry Link Image (see section 3.10). Alternatively, a background color can be configured in the Appearance tab of the Properties view (if Is Transparent: false). A border can be displayed if a non-zero Border Width is configured.

ImageArea: Components of type ImageMap are containers for clickable areas, which can be inserted as ImageArea or ImageTextField. One or more ImageArea(s) can be created in the Page Editor inside ImageMaps (see table 3.8 for a detailed description). The size of ImageAreas is insignificant, since they are only used to anchor polygonal features, which must also be inserted as AnchorPoint.


TABLE 3.8: Guide for creating ImageMaps in the CBA ItemBuilder






	Page Editor
	Description





	
	To add ImageAreas to an ImageMap, the ImageMap must first be selected in the Drawing Area of the Page Editor.



	
	When the ImageMap is selected, the ImageArea icon () can be selected in the Palette. After that a small rectangle (circa 25x25 pixels) needs to be drawn inside the ImageMap component, which represents the ImageArea.



	
	After the ImageArea has been added to the ImageMap, this component can be selected in the Page Editor. The displayed connector points () can be ignored. Once the ImageArea is selected, the icon AnchorPoint () can be selected in the Palette.



	
	Unlike other components, AnchorPoints are added by a simple click. The CBA ItemBuilder shows that this is only possible by clicking on components of type ImageArea.



	
	If the icon AnchorPoints is selected, then a selectable area for the ImageMap can be defined by a single click on the ImageArea. It is important to click inside the component of type AnchorPoints in the Drawing Area.



	
	Adding the AnchorPoints by clicking on the ImageArea automatically creates a rectangle whose corner points can now be adjusted to the desired shape. The polygon path symbolized by the corner points is always anchored to the ImageArea.



	
	The individual corner points of the polygon path can be moved in the Drawing Area with the mouse. The polygon path must be selected for this operation first. After that the mouse can be moved over a corner point. As soon as the mouse icon indicates that the corner point can be moved, the polygon path can be adjusted at the selected point using drag and drop. If the corner point falls exactly on the line between two already existing points by a drag and drop operation, then the corner point is removed.



	
	A new corner point can be added by clicking on a line of the polygon course. The Page Editor shows this option by a small + at the mouse pointer. After the new corner point has been added, it can be moved again via drag and drop.



	
	There are three different selections for ImageMaps. If the ImageArea is selected, properties for this polygon path can be changed in the Properties view.



	
	If the polygon path itself is selected, then the Properties view is not available, but individual points can be moved, added or deleted.



	
	Properties of the whole ImageMap (e.g. the property Multiple Select Mode) can be edited if the ImageMap is selected in the Page Editor.





ImageAreas are used to define the UserDefinedId for each click-sensitive path of an ImageMap, do define using the tab Appearance of the Properties view the background color and optional border (shown if Border Width is different from zero), to assign FSM Events (using the context menu entry Link Select Event and Link Deselect Event) and to define the Transparency (a value between 0 and 100 that defines the trancparency of the defined background color, when the path is selected).

AnchorPoint: For each ImageArea exactly one component is required to anchor the polygon path. For that purpose, an AnchorPoint must be added to the ImageArea. The AnchorPoint is not drawn as rectangle in the Page Editor. Instead, adding the AnchorPoint is performed by selecting the ImageArea to get access to the icon AnchorPoint in the Palette (), followed by a single click with the left mouse button inside of the rectangle that represents the ImageArea in the Page Editor. After adding the AnchorPoint, the automatically generated polygon path can be adjusted as described in table 3.8. Once the ImageArea is added to the ImageArea, only the polygon path or the ImageArea can be selected in the Drawing Area of the Page Editor. AnchorPoint do not provide additional properties.

ImageTextField: As shown in Figure 3.86, ImageMaps can contain standard components of type HTMLTextField and Button as well as ImageTextFields in addition to ImageAreas with AnchorPoints. Components of type Button (see section 3.11.2) and HTMLTextField (see section 3.8.2) added to ImageMaps can contain Links (see section 3.11), while the specific component of type ImageTextFields are TextFields (see section 3.8.3) without the possibility to add Links and to use the Highlighting feature. Instead, ImageTextFields can be added to ImageTextFields as click-sensitive texts that integrate into the Single-Choice (Multiple Select Mode: false) or Multiple-Choice (Multiple Select Mode: true) behavior of ImageTextFields (see Figure 3.110 for an example).


[image: Item illustrating advanced `ImageMaps` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/AdvancedImageMapExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/AdvancedImageMapExample.zip)).]

FIGURE 3.110: Item illustrating advanced ImageMaps (html|ib).




Figure 3.110 illustrates that multiple ImageMaps can be added to a page simultaneously and that ImageMaps not necessarily must use a background image.

[Issue 35]



3.10 Images and Multimedia Components



Many components can be used to display images on CBA ItemBuilder Pages. The following example (see Figure 3.111) shows a selection of components that can be linked to images.


[image: Item illustrating the use of images ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ImageExamples/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ImageExamples.zip)).]

FIGURE 3.111: Item illustrating the use of images (html|ib).





The component that can only display images is the ImageField. It can be used to display an image with a fixed size (width and height). The size of the image used should be preferably match the original size of the image in pixels (see 6.2.1 for details). Size and position can be changed in the Page Designer. To determine the exact position, the properties can also be defined in the Properties view (see Figure 3.112).


[image: *Rendering* (left) and *Page Editor* (middle) and *Properties* view showing item `ImageExamples.zip` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ImageExamples/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ImageExamples.zip))]

FIGURE 3.112: Rendering (left) and Page Editor (middle) and Properties view showing item ImageExamples.zip (html|ib)




Images can also be used as background in Panels. A panel without any further element leads to the same result as an ImageField. However, if required, additional components can be placed in panels. In the example above, this approach was used for the SingleLineInputField, which was placed on a panel with a pattern. Images are frequently used for the design of buttons. As described in subsection 3.11.2 the CBA ItemBuilder distinguishes two configurations, namely Standard button (only one image can be used) and Image button (one image can be defined for each of the states activated, deactivated, pressed and mouse over). RadioButtons can also contain images. If the images are specified as part of the RadioButton, the correpsonding option can also be selected by clicking on the image. Finally, the example in Figure 3.112 also shows that TextFields can contain images in addition to texts.


3.10.1 Manage Ressources

To use image files, audio data and video files for designing item they must be loaded into the CBA ItemBuilder Project File using the so-called Resource Browser. The Resource Browser supports the import of selected file formats that can typically be displayed in Web browsers.

 

Supported File Formats: The following Table 3.9 gives an overview of file formats for images, audio and video.21


TABLE 3.9: Supported File Formats for Resources







	Extension
	Description
	Type





	*.gif
	GIF: Graphics Interchange Format, Lossless compression, transparency option, animation option, good browser support
	Image



	*_min.png
	PNG: Portable Network Graphics, Lossless compression, transparency option, good browser support
	Image



	*.jpg
	JPEG: Joint Photographic Experts Group, Lossy compression, good browser support
	Image



	*.tiff
	TIFF: Tagged Image File Format, Lossless compression (not supported)
	Image



	*.mp3
	MP3: Lossy compression, good browser support
	Audio



	*.mp4
	MP4: Lossy compression, good browser support
	Video



	*.webm
	WebM: Lossy compression, good browser support
	Video



	*.ogg
	Ogg: Lossy compression, acceptable browser support
	Audio



	*.ogv
	Ogv: Lossy compression, not supported by all major browsers
	Video



	*.wav
	Wav: Waveform Audio File Format, good browser support
	Audio





Note that the XML-based vector image format for Scalable Vector Graphics (SVG) is currently not supported by the CBA ItemBuilder.

Resource Browser: To manage resources, the built-in Resource Browser provides the following three options: A) Add a resource file to the item project file, B) delete a selected resource file from the item project, and C) delete all unreferenced resources within a project.


[image: Icon `Browse resources` in the CBA ItemBuilder *Toolbar*.]

FIGURE 3.113: Icon Browse resources in the CBA ItemBuilder Toolbar.




The Resource Browser can also be opened using the entry Browse resources in the Project menu. To import a resource file, the Resource Browser once opened provides the button Add. This button opens an open file dialog that can be used to select one or multiple files of supported format for importing.

Resources whose file name contain special characters or blank space cannot be used in item project and displayed at runtime.22 Resources with file names that cannot be used at runtime are detected by the Resource Browser and the CBA ItemBuilder displays a warning message.


[image: *Resource Browser* to manage embedded resources.]

FIGURE 3.114: Resource Browser to manage embedded resources.




A resource entry selected in the list of Available resources (see Figure 3.114) can be removed, using the Delete button. If the automatic start of audio or video files should be suppressed, the checkbox Skip Preview can be marked.

As described in the following, resources are linked to components. Resources that are used in the current item project (i.e., images, audio files, and videos that are linked to components) cannot be deleted. Resources that not linked to a component (i.e., unused resource files) can be removed permanently from the item project using the button Cleanup.



Deleting unused resources can significantly reduce the file size of an item project. Many and large resources will slow down the processing of item project files at runtime.


Existing resources can be updated without linking them to components again by deleting the resource with the Resource Browser and adding a resource with the identical name. Note, however, that Generate and Save (see 3.2.1 below) will be necessary to apply the update.


Before you import resources in the item project, images, audio files, and videos should be prepared and converted into a suitable format. Images, for instance, should be prepared by image processing software and resized to the size required in the item project (see section 6.2 for further information).

A selection of file formats is commonly used for displaying images on the web. The CBA ItemBuilder supports image files in the formats JPEG, BMP, GIF and PNG.


[image: Item illustrating the use of different image file formats ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ImageRessourcesExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ImageRessourcesExample.zip)).]

FIGURE 3.115: Item illustrating the use of different image file formats (html|ib).




Audio files can be added in MP3, OGG and WAV formats in the CBA ItemBuilder’s Resource Browser. A tool to edit and convert audio files is Audacity. For audio files to be played, the hosting may also need to be configured correctly (e.g. with regard to range headers). Therefore, it is recommended to thoroughly test the use of the audio format on the planned devices. In addition, audio output in the browser typically cannot occur until at least one user interaction (click, keyboard input, or similar) has taken place. The three audio formats are illustrated in the following item shown in Figure 3.116.


[image: Item illustrating the use of different audio file formats ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/AudioFormatTester/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/AudioFormatTester.zip)).]

FIGURE 3.116: Item illustrating the use of different audio file formats (html|ib).




Video files can be added in MP4, OGV and webm formats in the CBA ItemBuilder’s Resource Browser. A tool to convert video files is VLC media player. The three video formats are illustrated in the following item shown in Figure 3.117.


[image: Item illustrating the use of different video file formats ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VideoFormatTester/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VideoFormatTester.zip)).]

FIGURE 3.117: Item illustrating the use of different video file formats (html|ib).






Depending on the deployment method not all audio and video file formats are supported. Currently, the Ogg / Ogv or Mp3 / Mp4 are suggested formates to be tested first. For online use, MP4 with the codec H264 and WebM with the codec VP8 or VP9 are particularly suitable because of their high compatibility.

As a rule of thumb, MP4 should work in all common browsers, i.e., Android, Chrome, Internet Explorer, Edge, Firefox, Opera, and Safari - only Firefox on Linux requires a plugin (FFmpeg). Further, all universal browsers support WebM; the only exceptions are Internet Explorer and Safari.


Resource files of a supported format can be used in item projects by linking them to components, as described in the next section.



3.10.2 Components to Show Images

Importing images via the Resource Browser is only the first step. An image must also be assigned to a component in the Page Editor to be visible on a page, and all components that can show images provide the “Link Image” entry in the context menu.

Dedicated ImageFields: ImageFields are components dedicated to showing images on pages. If image file formats support transparency (i.e., *.gif and *_min.png), the property Is Transparent can be set to true and Background Ccolor can be used. Images can have borders (i.e., Border Color can be used when Border Width is different from zero) and ImageFields support text for Mouse Over (text that is displayed when mouse over the ImageField). Components of type ImageFields are typically added to Panels, but are also supported within WebBrowserToolbars.

The CBA ItemBuilder automatically resizes components of type ImageField and Panel to the native size of the image. Although the components can be resized afterward, resizing images either risk a loss in quality or a potential waste of resources, as item projects might require more bandwidth as needed (see section 6.2 for further information). A tool to create and edit images is paint.net.

Background Images in Panels: Images can also be used to create the background of a page. For this, no ImageFields have to be used in the CBA ItemBuilder, but images can also be linked directly to a panel. Note, however, that when images are added as background images to Panels via the Link Image option, they must be precisely the size of the panel in Width and Height. If this is not the case, then unlike ImageFields, they will be cut off (if the image is larger than the Panel) or displayed repeatedly (if the image is smaller than the Panel). This difference between ImageFields for displaying images and the use of images in the background of Panels is shown in Figure 3.118.


[image: Item illustrating the difference scaling of `ImageFields` and images as background in `Panels` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ImageScalingInPanelBackgroundExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ImageScalingInPanelBackgroundExample.zip)).]

FIGURE 3.118: Item illustrating the difference scaling of ImageFields and images as background in Panels (html|ib).






Other Components that allow to Link Images: TextFields (see subsection 3.8.3) can contain images (see Figure 3.111 in subsection 3.10 for an example). Images are necessary for components of type ImageMap (see section 3.10). Images can also be used to design components of type Button as so-called Image Button (see subsection 3.11.2). Moreover, TableCells (see subsection 3.9.8) can be linked to images. Finally, MapBasedVariableDisplay (see subsection 4.2.5) can be configured to show images assigned to values using so-called Value Maps (see subsection ).



3.10.3 Components for Audio and Video Content

 

For audio and video content integration, the Page Editor provides components of Audio and Video type that can be placed into Panels. These two components can be configured with or without visible controls and are used to play hard-linked audio or video resources. Multiple Audio or Video components can be embedded if numerous audio or video resources are required on a page. For special use cases, the CBA ItemBuilder also provides additional functionality to play audio or video resources selected via a Value Map with a variable (see 4.2.5 for a description of using MapBasedVariableDisplay with the Value Display Type either AUDIO or VIDEO).

 

Link Audio / Video to Components: Similar to images, videos and audio files can be added as resources to the CBA ItemBuilder project. After inserting them in the Resource Browser, they can be linked to the components using the context menu item Link Video or Link Audio (as shown in Figure 3.119).

(ref:IBLinkAudioExample) Link Audio dialog for Audio components.


[image: (ref:IBLinkAudioExample)]

FIGURE 3.119: (ref:IBLinkAudioExample)




 

Internal vs. External Media: In addition to internal resources that are part of the CBA ItemBuilder Project Files (referred to as Internal Media, audio and video files can also be inserted as URL’s (referred to as External Media). It should be noted, of course, that the External Media must then also be available at the time of the test execution, which is typically not guaranteed for offline deliveries (see section 7.2).



To make audio and video resources part of the CBA ItemBuilder Project Files, they must be inserted via the Resource Browser and used as Internal Media.


 

Controls: The CBA ItemBuilder allows using audio and video resources with the default controls (i.e., a start and a stop button; property Hide Controls: false). With this setting, test-takers can also navigate within the audio and video files and thus reset the playback. Alternatively, the default buttons can be hidden with the Hide Controls: true option. For this use case, the setMediaPlayer() operator must then be used to start the output and pause or stop it if necessary (see section 4.4.6). This property Hide Controls is illustrated for audio and video components in the item shown in Figure 3.120.


[image: Item illustrating the use properties `Hide Controls` and `Max Play` of `Audio` and `Video` components ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/AudioVideoProperties/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/AudioVideoProperties.zip)).]

FIGURE 3.120: Item illustrating the use properties Hide Controls and Max Play of Audio and Video components (html|ib).




 

Max Play: Variables and the finite-state machine can be used to control precisely when and how often multimedia resources can be played if the standard controls are not used to control audio and video output. For simple use cases, however, the Max Play property (the default value 00 means any number of times) can be used to specify how often an audio file or a video file can be played. When the number is reached, the default controls are automatically hidden (see the item in Figure 3.120 as an example). The Max Play value can be changed directly in the Properties view.

Note, however, that using a custom Play button (i.e., a component of type Button that triggers an event and uses the Finite-State Machine operator setMediaPlayer() to play the audio, see section 4.4.6) is not acknowledging the Max play setting (see Figure 4.54) for an implementation of an restriction for audio playback using Finite-State Machine variables).

The link between the components of type Audio and Video and the Finite-State Machine is provided by a number of events that can be triggered (and processed by the Finite-State Machine, as described in section 4.4; see Figure 3.121).

 

(ref:IBSetMediaRaisedEvents) Set Media Raised Events dialog for Audio components.


[image: (ref:IBSetMediaRaisedEvents)]

FIGURE 3.121: (ref:IBSetMediaRaisedEvents)






Starting with CBA ItemBuilder 9.8, an End Event is also provided, and the events are triggered even if the playback state is changed by an FSM operator (see section 4.4.6).


 

Automatic Start: If an audio or video resource is to be played automatically when a page is visited, this can be configured with the Automatic Start: true property. The items created with the CBA ItemBuilder are rendered in web browsers. Thus they are subject to the security restrictions of the browsers. One of these security restrictions requires user interaction before audio output may be started. This is always not the case if Automatic Start: true (or via the Finite-State Machine) is used to start an audio output in an item before the user has clicked or otherwise interacted with the HTML output. This is not a problem for operative test execution, as user first interaction is usually triggered by entering a login name or confirming the privacy notices before the first audio output is required. However, the security restriction also applies to editing items and the Preview used for this purpose. Therefore, the Preview can also be started with a simulated login dialog (see Show Login Dialog option in section 1.4.2). If this option is not activated (and the warning message of the CBA ItemBuilder is ignored), the Automatic Start function cannot work in the Preview.

 

Audio Volume: Controlling the audio volume is possible with the components of type ‘Audio’ and ‘Video’ for the test-taker when the default controls are used (Hide Controls: false). If the start volume of the is to be set or if the volume of individual audio or video components is to be changed, an operator is available (see section 4.4.6) that can be used in the finite-state machine. Controlling the system volume of the device on which the web browser is executed within which the items created with the CBA ItemBuilder are rendered is not possible from within the item. The test delivery software can take over this functionality if the test execution takes place under controlled conditions (e.g., using kiosk mode with a USB stick deployment, see subsection 7.5.3 for an example).



The first audio output of an item within a test is delayed by a latency of about one second from the browser.


 

Alternate Video / Alternate Audio: Not all video formats (formerly also audio formats) are supported in all browsers. The CBA ItemBuilder, therefore, provides the functionality to link an Alternate Video to a component of type Video in addition to the primary resource (Audio analogously). The alternate media is used if a browser does not support the primary media.

Recording: The audio component can also be configured to record audio, using the property Record Audio: true. Starting (and ending) the recording is connected, for instance to buttons, as shown in Figure 3.122, using the dynamic features (i.e., Finite State Machine Events) described in Chapter 4.


[image: Item illustrating audio recording using the `Audio` component ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/AudioRecordingExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/AudioRecordingExample.zip)).]

FIGURE 3.122: Item illustrating audio recording using the Audio component (html|ib).




As Figure 3.123 shows, the component of type Video can also be used in the same way to record from the webcam.


[image: Item illustrating audio recording using the `Video` component ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VideoRecordingExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VideoRecordingExample.zip)).]

FIGURE 3.123: Item illustrating audio recording using the Video component (html|ib).




Note that the audio (and video) recording will only work if access to the microphone (or webcam) is granted. Moreover, due to a bug in CBA ItemBuilder 10.0, the audio-track of the recording is played twice after recording.

A couple of additional features of Audio and Video components appear in the CBA ItemBuilder user-interface but are currently either deprecated, still under development or undocumented. The property Use Audio is currently not functional. Moreover, as illustrated in Figure 3.120 the Frozen property is currently not functioning, and the feature VideoTextArea is currently not used.

[Issue 46]
[Issue 47]
[Issue 48]
[Issue 49]



3.11 Links between Pages



 

Assessment components created with em CBA ItemBuilder can consist of a single page or of multiple pages. If multiple pages are used, then Links attached to components can be used to switch between pages.



Links vs. Conditional Links: Links between pages in the CBA ItemBuilder can either be static (i.e., the same target page is always addressed). Or the link’s target is defined by conditions (i.e., the evaluation of the conditions decides which page is addressed). Accordingly, the CBA ItemBuilder differentiates between Links and Conditional Links.

The following example in Figure 3.124 illustrates simple Links and a Conditional Link.


[image: Example for *Links* and *Conditional Links* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/LinksAndConditionalLinksExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/LinksAndConditionalLinksExample.zip)).]

FIGURE 3.124: Example for Links and Conditional Links (html|ib).




Figure 3.125 graphically illustrates the distinction between Links and Conditional Links that is demonstrated in the item in Figure 3.124.


[image: Schematic display of links in Figure 3.124.]

FIGURE 3.125: Schematic display of links in Figure 3.124.




The button on Page A always links to Page B. Similarly, the buttons on Page C and Page D always link back to Page B. The difference between these simple links and a conditional link is illustrated on Page B. Here, the button Link to Page A has a simple link, always referring back to Page A, while the button Link to Page A or C is configured with a conditional link that points either to Page C or to Page D.

The condition defined for this example has two parts, separated in the two lines:

{pageD: CheckBoxID}
{pageC: not CheckBoxID}


The first line defines the link to pageD (the page name of Page D), if the component of type Checkbox with the UserDefinedId: CheckBoxID is selected. If this Checkbox is selected, then the conditional link refers to pageD. If the component of type Checkbox with the UserDefinedId: CheckBoxID is not selected, the first line is ignored and the second line is evaluated. Since not CheckBoxID is true, the conditional link will link to pageC (the page name of Page C) in this example.

Conditions for Conditional Links are stored as syntax in the CBA ItemBuilder in the form shown. This is introduced in detail in section 4.1 and described specifically for Conditional Links in section 4.3.

The next section 3.11.1 describes how Links for switching between pages can be connected to various components in the Page Editor. Links between pages and xPages are covered in section 3.11.4, including an overview of links between pages of different page type.

Connecting multiple pages using links is a central concept of the CBA ItemBuilder, which is needed to create complex items. Analogous to hypertext, it is used to switch (whole) pages. With the help of special page types (e.g. WebChild pages, see section Y) it can also be used to change sections of the visually presented information. Finally, links can also be used to display content in the form of dialogues (see section Y). Additional possibilities to switch between pages are:


	Pages can be linked to States. In this case, a page is displayed when the particular state that is linked to that page becomes the current state. More on this option can be found in section 4.4.9.


	Pages in PageArea-components (see section 3.5.4) can also be switched with a special operator (setEmbeddedPage (PageArea,PageName)). For more on this option, see section 4.3.4 (conditional links) and section 4.4.6.






Links vs. Commands: Links are used for switching between pages within a CBA ItemBuilder Task (see section 3.6 for task definition and section 8.2 for more information on splitting assessment components into individual tasks). To switch and navigate between CBA ItemBuilder tasks, Runtime Commands are used (see section 3.12).

Links vs. Events: Finally, the CBA ItemBuilder also allows to assign Events to components (see section 4.4.3). Events can be used to trigger Transitions in the Finite-State Machine of a project (see section 4.4), and operators within transitions (see section 4.4.6) or pages assigned to states (see section 4.4.9) can also be used to change pages.


3.11.1 Simple Components to Link Pages

Various components can be used to trigger switching between pages as links. Almost exclusively for switching between pages, the dedicated component Link is used, which is described first in the next section.



Dedicated Link-Component: During the execution of an assessment component created with the CBA ItemBuilder, components of type ‘Link’ are displayed as text. Clicking on the text will switch to the linked page. If a mouse is positioned over a link as a pointing device for a short time, a mouseover text can be displayed:


[image: Example for components of type `Link` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TextLinkEample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TextLinkEample.zip)).]

FIGURE 3.126: Example for components of type Link (html|ib).




Adding a component of type Link to a page in the Page Editor requires selecting the container in which the Link should be placed first. If a container allows hosting components of type Links (such as, for instance, Panels), the pallet will show the component Link (see section 3.1.3). After selecting the component Link (see the small symbol ) in the palette, a rectangle can then be drawn in the Drawing Area and its position adjusted with the properties X and Y (and Width and Height) if necessary. Font family, font size, font color of Links can be configured, as well as border and background (see 3.1.4).

The Link text and the target page can be configured using the Context Menu that is available using right-click on a component of type Link, as shown in Figure 3.127.


[image: *Context Menu* for components of type `Link`.]

FIGURE 3.127: Context Menu for components of type Link.




Edit Link Text: To change the text that is shown as Link, the entry Edit Text in Figure 3.127 can be used. The built-in editor of the CBA ItemBuilder allows you to edit the single or multline link text, as shown in Figure 3.128.


[image: Dialog *Configure a Multiline Text*.]

FIGURE 3.128: Dialog Configure a Multiline Text.




Link Page: Using the context menu shown in Figure 3.127 the dialog to Link Pages can be requested. The dialog for linking pages (see Figure 3.129) is structured the same for all components that support this feature. In the section Select page on the left side of the dialog, all available pages are listed that can be used as link-targets in the current context. Defining a link is possible by selecting one of the pages before confirming the dialog with OK. The selected page can be changed by selecting a new page. Removing a defined link is possible by de-selecting the select link target-page.


[image: Dialog *Link Page* used for components of different type.]

FIGURE 3.129: Dialog Link Page used for components of different type.






Visited Link Color: On the right side of the Link Page-dialog shown in Figure 3.129 different colors for visited and not-visited links can be defined. The default values for link colors can be defined in the Global Properties of a CBA ItemBuilder project file (see section 6.3).

Conditional Links: The buttons Edit Condition and Drop Condition in the lower right part of Figure 3.129 can be used to edit a Conditional Link as described in detail in section 4.3. It is important to note that if Conditional Links are used, the one or multiple target pages are not marked as selected in the Select page section of the dialog shown in Figure 3.129.



3.11.2 Button-Component

 

Components of type Button play an essential role in designing interactive assessment components with the CBA ItemBuilder. Typically, at least one button is used to navigate to the following Tasks (connected to the NEXT_TASK command, see section 3.12.1). Buttons can not only be used for links but also to collect click responses and to trigger FSM events (see section 4.4.3).

Component for (Image)Buttons: General-purpose components that also can be used to link between pages are buttons. Adding a component of type Buttonto a page requires selecting a container that can host Buttons (e.g., a Panel) first. If the element selected in the Drawing Area can contain a button, the Palette shows the icon to add a Button (see the small symbol ).

The example item in Figure 3.130 illustrates for components of type Button two important properties: The use of images to style Buttons and the property Toggle.


[image: Item illustrating the component `Button` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ButtonAndImageButtonExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ButtonAndImageButtonExample.zip)).]

FIGURE 3.130: Item illustrating the component Button (html|ib).




As with all components, the context menu (right mouse button, see Figure 3.131) with the entry Show Property View can be used to edit properties.


[image: *Context-Menu* for components of type `Button`.]

FIGURE 3.131: Context-Menu for components of type Button.




Components of type Button can have a text property that can be edited via the context menu entry Edit Text (see Figure 3.131). The editor for editing the text property is identical to the editor of text properties for components of type ‘Link’ already shown above (see Figure 3.128).

 

Toggle Buttons: By default, buttons can be clicked multiple times and buttons are only pressed as long as clicked by mouse or touch. However, buttons can also be configured to toggle between either pressed (i.e., on) and unpressed (i.e., off). So-called Toggle Buttons are defined by changing the property Is Toggle: true. Buttons with the Is Toggle=true property can remain in the pressed and non-pressed state, while buttons with the Is Toggle=false property automatically fall back to the non-pressed state after being pressed. Toggle Buttons can also be grouped by using the Frame Select Groups described in subsection 3.9.4 (see the item in Figure3.91 for an example).

 

Standard Buttons vs. Image Buttons: Whether the ‘Text’ property should be used for components of the ‘Button’ type or not depends on the use of images for button design. The CBA ItemBuilder distinguishes between two configurations: Standard Buttons which consist of a text and an optional image, and Image Buttons which should be designed using images only.


[image: Component of type `Button` configured as *Standard Button*.]

FIGURE 3.132: Component of type Button configured as Standard Button.




Figure 3.132 shows the dialog Link Image which can be accessed with the context menu item of the same name. The multiline text of Buttons can be styled using the properties font family, font size, font color, if a Button is configured as Standard Button. Moreover, border color and background color can be used to style Standard Buttons (see section 3.1.4). Standard Buttons can refer to one single image that is used as background image (see the buttons with the labels “Button B” in the example item provided in Figure 3.131).


[image: Component of type `Button` configured as *Image Button*.]

FIGURE 3.133: Component of type Button configured as Image Button.




If components of type Button are configured as Image Button (see figure 3.133), then four different images can be specified:


	Activated Image: This image is displayed when the button is active, i.e., it can be pressed. For buttons with the property Is Toggle=true, this image is displayed when the button is not toggled.


	Deactivated Image: This image is displayed when the button is frozen. A button can be frozen at design time using the property Is Frozen=true or at runtime using the setFrozen()-operator. By default buttons are created with the property Is Frozen=false (identical to the unsetFrozen()-operator).


	Pressed Image: While a button is pressed, this image is displayed. For buttons with the property Is Toggle=true this image is displayed when the button is toggled.


	Mouseover Image: This image is displayed, when a mouse as pointing device is moved over a button.




Using the Context-Menu (see Figure 3.131 the background can be configured via the entry Set Selected Background Color) for standard buttons with the property Is Toggle=true (see Figure 3.134).


[image: Dialog *Set Background Color* for `Buttons` (*Standard Buttons*).]

FIGURE 3.134: Dialog Set Background Color for Buttons (Standard Buttons).




Buttons are always defined as rectangles. If rounded corners are required, transparent images can be used, when the button is configured as Image Button. Components of type Button can be set frozen using the operators setFrozen() (and the revers operator unSetFrozen(), see appendix 10.2) using either the Finite-State Machine (see section 4.4), Conditional Links (see section 4.3), or the Task Initialization (see section 4.5). The checkbox “Show Buttons as Frozen” in the example item in Figure 3.130 illustrates how frozen components of type Button look like.

Similar to components of type Link (see subsection 3.11.1) provides the context menu an entry Link Page (see Figure 3.131) that can be used to define regular (static) Links or to assign Conditional Links (see section 4.3) to components of type Button.

Buttons can be used in the CBA ItemBuilder when designing assessment components for very different purposes. Buttons can not only Link Pages, as described in the previous section 3.11.1 and switch between pages or open dialog pages (see section 3.15). Using the entry Set Command of the context menu (see Figure 3.131) enables to use buttons to control the navigation between tasks, close dialog pages, or change the full-screen mode on or off using Runtime Commands (see section 3.12).

 

Buttons can also execute operators. This is either possible using Conditional Links (see section 4.3) or with Events (see section 4.4.3). Events can be linked to selection (see menu entry Link Select Event) or deselection (see menu entry Link Deselect Event) of buttons using the context menu (see Figure 3.131). Deselect Event will only trigger for buttons configured as Is Toggle=true. If Events are linked to buttons, the events can be used to trigger rules in the finite-state machine (see section 4.4 for more details).

Finally, buttons can also be used to increase or decrease the value of components of type ScaleValueInput (see section 4.2.2 for a description of the entry Attach ScaleValueInput).



Text Color for Buttons: The text inside buttons works as a link, so the general link-color settings (see section 6.3) need to be considered. To set the text color in the Properties view, the properties Use Default Link Color: false and Use Same Color For Visited Reference: true must be set in the Display section.

Advanced Button Components: Not all functionality can be realized with simple buttons. For special requirements, the CBA ItemBuilder provides additional components that can be used, for instance, on particular page types (e.g., TaskbarButton and TabButton, see section 3.13.1). Finally, so-called map-based variable displays (see section 4.2.5) can be used instead of buttons, where, for instance, the displayed image can be changed depending on a variable with the help of ValueMaps (see section 4.2.4).



3.11.3 Links with other Compoments

Not only Links (see section 3.11.1) and Buttons (see section 3.11.2) can be used to link between pages. As can be seen in the item shown in Figure 3.135), a number of other components support the functionality of linking to pages directly.


[image: Item illustrating links in different components ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ComponentsWithLinksExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ComponentsWithLinksExample.zip)).]

FIGURE 3.135: Item illustrating links in different components (html|ib).






Embedded Links: Components of type HTMLTextFields (see subsection 3.8.2) and TextField (see subsection 3.8.3) can embed links. By linking pages, the CBA ItemBuilder can be used to create navigation scenarios within assessment components and to design interactive tasks. Especially in combination with the special page types for web browser environments (web browser page and web child page, see section 3.13.2) typical hypertext environments can be created and used as part of computer-based assessments under controlled conditions.

Use Links on Answer-Selection: Components of type ComboBox and List (see section 3.9.5 for more details about ComboBox, ComboBoxItem, List and ListItem) and MenuItem (see section 3.9.7 for more details on MenuBar, Menu and MenuItem) can be used to link pages, when a response is given by selecting a particular item.

Use Links on Focus: Components of type SingleLineInputField can be used to trigger links when the components become focus. Since SingleLineInputField can also be defined to be Readonly=true (see section 3.9.1 for details), this can be very useful for using operators in Conditional Links without writing more complex Finite-State Machine rules (see section 4.3.3).

[Issue 2]
Change Page without Links: Not all components provide the entry Link Page in their context menu and can be used this way to switch to another page. Interactions with these components, for instance, mouse-clicks on components of type ImageValueDisplay, can nevertheless be used to switch between pages with the help of the finite-state machine. This approach based on the assignment of pages to states is described in detail in section 4.4.9.



3.11.4 Advanced Linking Scenarios

The CBA ItemBuilder offers unique flexibility in creating multi-page assessment components with different page types and various linking options. Pages can be of different types and can also be used as xPage, Dialog Page or Page Area. The following section is intended for advanced users of the CBA ItemBuilder who want to take advantage of the full range of possibilities when linking pages.



Link between Pages and xPages: When linking pages, it is crucial to consider the page type (see section 3.4) and the xPage-property (see section 3.4). For example, pages that were defined as xPage in the CBA ItemBuilder can only link to other xPages. Similarly, a page that is not defined as an xPage cannot link to an xPage. The separation of regular pages and xPages is also maintained for dialog pages (see 3.15 for more details on dialog pages). Again, if a dialog is linked from an xPage, it must necessarily be an xPage.

The following advanced example with two regular pages (Page1 and Page2), two xPages (X1 and X2), and two dialog pages (“Dialog1” and “XDialog1”) illustrates how xPages and Pages can be linked:23


[image: Item illustrating links with *xPage*-layouts ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/XPageAndPageLinkExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/XPageAndPageLinkExample.zip)).]

FIGURE 3.136: Item illustrating links with xPage-layouts (html|ib).




Lets look at the button Go to "X2", which is connected to page X2 via Link Page. Since this page is an xPage (see the small symbol ), the linked page is displayed in the xPage area of the item. Similarly, the link behind the Go to "X1" button on page X2 also causes the page X1 to be displayed in the xPage area. Accordingly, xPages are locked to remain in the xPage area of the item. The same is true for regular pages as well, as illustrated with the button Go to "Page2" (on Page1) and Go to "Page1" (on Page2). Components on pages that are not configured as xPages can link only to other regular pages.

The separation of pages by the xPage-flag is already implemented by the in the dialog to configuring links, i.e. depending on whether the link should be configured on a Page or an xPage, only all available Pages or xPages are listed.

The example item (see Figure 3.136 illustrates not only simple links between Pages and xPages, but also the use of links in dialog pages (see subsection 3.15 for more details) and the use of Finite-State Machine Events to switch Pages and xPages (see subsection 3.11.4 for more details).



Links Between Pages of Different Type: The CBA ItemBuilder distinguishes two kinds of links: Regular (static) Links and Conditional Links. Links can be assigned to a variety of components using the context menu entry Link Page. Links are resolved in the current environment and taking page types into account. To enable advanced linking across environments and page types, either Conditional Links or Finite-State Machines are required.



  
  
  ch006.xhtml
  
  




4 Enrichting Items using Dynamic Content



The CBA ItemBuilder is an authoring tool that allows defining simple and complex items using different editors. In the previous chapter 3, the Page Editor was introduced for creating static content. The Page Editor together with the Palette allows to design pages uses a graphical representation of components and point & click techniques. Moreover, the Properties view was used to define and change detailed information for a selected component. The CBA ItemBuilder also uses text-based syntax to enrich the items with dynamic content, if necessary, for complex items.

Example: Before we describe the various uses of the syntax in detail, we start with an elementary example illustrating the CBA ItemBuilders’ logical layer (i.e., the finite-state machine idea) that rests on this text-based syntax. Imagine, we want to improve the usability of a drag-and-drop item, to make the computer-based assessment more accessible to all students. For that purpose, we want to show a tiny hint on how to respond using the drag-and-drop user interaction. We use a modal dialog (see section 3.15) that is shown if a button with a question mark is clicked (see Figure 4.1). However, let’s assume that we want to hide this button as soon as the student interacted with the item showing that they are familiar with the drag-and-drop technique. That means, as soon as one element was successfully moved in a drag-and-drop order interaction, we want to hide the button for requesting the hint. Accordingly, the item technically should distinguish two states: In the first condition (state State_Hint_Visible), we do not yet know whether the test-taker knows how to answer the question. Therefore, the hint button should be visible that explains how the items can be answered. As soon as the test-taker has shown that they can respond to the task using the drag-and-drop technique, this hint is no longer necessary. Accordingly, the item should change into a different condition (state State_Hint_Invisible). So in the state State_Hint_Invisible, the button should be invisible, and the first drag-and-drop operation can be used to trigger the change from state State_Hint_Visible to state State_Hint_Invisible.


[image: Example for a hint button disabled using states ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ShowHintStateExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ShowHintStateExample.zip)).]

FIGURE 4.1: Example for a hint button disabled using states (html|ib).




To get an insight into the logic layer of the CBA ItemBuilder, which is designed using Finite-State Machines, at runtime, you can request support in the Preview.



State Machine Debug Window: For the dynamic content, the CBA ItemBuilder offers a built-in State Machine Debug Window. Similar to the Scoring Debug Window (see section 1.5.2) and the Trace Debug Window (see section 1.6.2), the State Machine Debug Window can be requested using a hotkey (default is Strg / Ctrl + M, see appendix 10.4 for details).


[image: Screenshots of the *State Machine Debug Window* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ShowHintStateExampleStateMachineDebugWindow/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ShowHintStateExampleStateMachineDebugWindow.zip)).]

FIGURE 4.2: Screenshots of the State Machine Debug Window (html|ib).






The State Machine Debug Window shows states and variables that can determine at runtime the appearance and behavior of assessment components created with the CBA ItemBuilder. Variables that can be defined (see section 4.2) are listed, together with the values of the variables at the time the State Machine Debug Window was opened. Below this, the Current State (for each Finite-State Machine, see section 4.4.2) is displayed, followed by the list of already visited States. Finally, the FSM events that have just occurred (see section 4.4.3) are displayed.



4.1 Syntax Overview



To implement dynamic item contents, the CBA ItemBuilder provides editors for various forms of text-based syntax. The different syntax types are designed in such a way that no specific programming knowledge is required and the different editors support editing and correcting syntax. Hence, although the ItemBuilder is primarily a graphical tool, some advanced features require the use of simple syntax expressions. Apart from the basic similarity of syntax variants, there are specific operators and syntax rules, which are described in the corresponding sub-sections:

 


	Task Initialization (i.e., syntax-based configuration of Tasks, see section 4.5)

	Finite-State Machines (i.e., internal logic layer of the CBA ItemBuilder capable to change behavior and visual presentation of items, see section 4.4)

	Conditional Links (i.e., links that change the link target according to conditions, see section 4.3)



Syntax will also be used in the next chapter to combine information from the response (e.g., component states from input components such as RadioButtons, CheckBoxes, SingleLineInputFields, etc.) and probably the response process (e.g., visited pages, occurred states, values of variables, etc.) to outcomes:




	Scoring (i.e., the definition of hits conditions using a scoring syntax, see chapter 5)



The graphical user interface allows the definition of the visible elements assessment components such as items and instruction pages. However, computer-based assessments’ full potential can only be realized with the CBA ItemBuilder by using the syntax components.


4.1.1 Basic Syntax Elements

The various definitions, which are made in the CBA ItemBuilder using a syntax that is easy to learn, are based on common design principles.

 

UserDefinedIds: To refer to components that have been created and placed in the Page Editor in the Drawing Area, the UserDefineId is always used (see section 3.7.4). Since these identifiers must always be unique within a CBA ItemBuilder Project File, each component can be referenced by the string that was defined as UserDefinedId. UserDefineIds can be used to name components or to query or evaluate the state of components.

If components can occur multiple times within a task, for instance, because a PageArea can be included multiple times (see section 3.5.4), the UserDefinedId of the container in which components are nested used must be included (see section 4.1.4).

 

Operators: In addition to the UserDefineIds, predefined keywords also form the syntax provided by the CBA ItemBuilder. These keywords mark Operators that can be used to apply changes to components or to perform more specific evaluations of component states in scoring conditions. Operators follow a common scheme: name(arguments). The operators are distinguished by their name and the different operators can have arguments, but do not have to. The meaning of the arguments is determined thereby over the order and defined for each operator. Arguments are specified in quotation marks if they are strings. Multiple operators can be listed, depending on the context, using spaces (Conditional Links, see section 4.3.3; Task Initialization rules, see section 4.5), commas (Actions in finite-state machine rules, see section 4.4.6) or combined by logical expressions (Scoring Conditions, see section 5.3.2).



The exact spelling (including upper and lower case and underscores) must be followed for operators in CBA ItemBuilder syntax.


 

Auto-Completion: A useful helper for syntax creation is auto-completion. To enable this feature, press Ctrl + Space (Strg + Space) in a syntax editor of the CBA ItemBuilder. Available operators and existing UserDefinedIds are then displayed and selected by pressing Enter.


[image: Screenshot of the *Auto-Completion* feature in syntax editors.]

FIGURE 4.3: Screenshot of the Auto-Completion feature in syntax editors.




Auto-completion is available in the editor for creating conditional links (see section 4.3), in the editor for defining state machine events and rules (see section 4.4), in the editor for defining the task-initialization (see section 4.5), and in the editor for scoring rules (i.e., Hit- / Miss-conditions, see section 5.3).



Auto-completion simplifies the definition of syntax in the CBA ItemBuilder since valid syntax elements (operators, UserDefinedIds, etc.) are automatically suggested after pressing Strg+Space / Cntr+Space.




With a small red icon, errors within syntax definitions are automatically detected and displayed.



4.1.2 Comments

 

In all syntax flavors Comments can be defined to document and describe purpose of particular part of the syntax. To mark a line as a comment in a syntax, add two slashes left to the text that should be treated as comment (e.g., (...) // My Comment ). Everything in the remaining line of a syntax right to the // will be ignored.



Using the comment function to document syntax is highly recommended to structure syntax and to simplify the readability of syntax.


Multiple lines can be commented by starting either each line with // or using the syntax /* Comment (that can multi-line text) */. Everything between /* and */ is ignored as interpreted as comment, even if it spans multiple lines.



4.1.3 Logical Expressions and Bracketing

The CBA ItemBuilder syntax is not a complex programming language and requires only to learn few keywords (mainly, the so-called operators, see 4.4.6). However, three crucial points must be acknowledged to use the CBA ItemBuilder syntax capabilities efficiently, as described in the following.



Case Sensitive: All syntax statements are case-sensitive. This applies to UserDefinedIds (see section 3.7.4), to the operators (see section 4.4.6), the keywords Events: and Rules which are used to structure the Finite-State Machine syntax, and the Logical Expressions. Use the Auto-Completion (see section 4.1.1) to avoid invalid syntax due to wrong capitalization.

Logical Expressions: The CBA ItemBuilder can logically link or negate statements in the different syntax variants, e.g., logical conjunction (and), logical disjunction (or) and logical negation (not). For the formulation of logical expressions, the keywords true and false are additionally available. For example, if true is specified as a condition, this condition is always fulfilled.





Logical expressions must always be written in brackets with two components (pairs)!


Bracketing: Logical expressions in the syntax of the CBA ItemBuilder must always be formulated in such a way that not more than two expressions occur within one pair of brackets. For more than two statements, this requires nesting the statements, as illustrated with the following examples:


	Logical conjunction of two conditions: ( Condition1 and Condition2 )

	Logical disjunction of two conditions: ( Condition1 or Condition2 )

	Logical negation of a condition: not Condition

	Logical conjunction of three conditions: ( ( Condition1 and Condition2 ) and Condition3 )

	Can be considered as two conjunction A: ( Condition1 and Condition2 ), B: Condition3,



	combined to ( A and B ).




	Logical negation of a conjunction of three conditions: not ( ( Condition1 and Condition2 ) and Condition3 )

	Can be considered as two conjunction A: ( Condition1 and Condition2 ), B: Condition3,

	combined to C: ( A and B ), and

	negate as not C.




	Logical negation of a conjunction of three conditions (two with negation): not ( ( Condition1 and not Condition2 ) and not Condition3 )



The CBA ItemBuilder has a built-in syntax checker that identifies errors with small icons and mouse-over texts. Writing syntax in several lines and using comments can help write maintainable valid syntax for complex statements.



4.1.4 UserDefinedIds of Nested Pages in Syntax

Special rules apply, if pages are nested. For instance, if components of the type PageArea are used for the design of pages, then the components defined on the embedded page can appear several times within a Task because using the same embedded page multiple times is possible. This means that the UserDefinedId is defined for the embedded page are no longer sufficient to uniquely identify a particular component. However, each PageArea itself has its own UserDefinedId. In order to be able to use components on nested pages such as PageAreas in the syntax of the CBA ItemBuilder, the UserDefinedId of the container (i.e., the PageArea) must be used as a prefix:



References to components on embedded pages such as PageAreas must be specified in the form UserDefinedId_of_the Container.UserDefinedId_of_the_Component.


The syntax editor does not check if a component is on a page referenced by a PageArea. Ignoring this rule is a common source of errors for conditions and operators in conditional links (see section 4.3.4), finite-state machine operators (see section 4.4.6), and scoring (see section 5.3.9).



4.1.5 Argument Indices


At selected points in the syntax, the CBA ItemBuilder allows so-called argument indices. For example, the operator trace_text(Argument), which can be used to insert a text into the trace log of the CBAItemBuilder, can be used with an argument list (see section 4.4.6). If only a string argument is used, for instance, the string My custom log information can be inserted into the log data:

trace_text("My custom log information")


If an argument index is used in the first string argument with the syntax %{Index}$s, values of variables can be inserted into the created log entry. With this syntax any number of additional values can be inserted into the first string argument, based on an index starting with 1. In the following example, the values of the Variables (see section 4.2) myVar1 and myVar2 are used:

trace_text("My custom log with value %1$s for variable myVar1 and 
            value %2$s for variable myVar2", myVar1, myVar2)


When this operator is called, and assuming the values 10 for myVar1 and 5 for variable myVar2, the following text would be added to the trace log: "My custom log with value 10 for variable myVar1 and value 5 for variable myVar2"

Argument lists can be used for the trace_text()-operator (see section 4.4.6 for an example) and for the result_text()-operator (see section 5.3.10 for an example).




4.2 Variables and Value Maps



Variables are placeholders for values of a particular variable Type, used in the logic layer of CBA ItemBuilder projects.



Variables in the CBA ItemBuilder are either of type INTEGER (i.e. can only contain numbers without decimal places), NUMBER (i.e. floating point numbers with a specific accuracy), STRING (i.e. text represented as characters) or BOOLEAN (i.e. logical values true or false).


Variables can be used for various purposes, for instance, in conditions of the finite-state machine rules (see section 4.4.5) or to adapt the presentation of text, numbers or images 4.2.5. To map values of Type INTEGER to text, images, audio and video files, Value Maps are used (see section 4.2.4).

Variables are created in the CBA ItemBuilder by specifying a unique Variable Name on the project level (see section 4.2.1) and by defining the Type of the variable and an initial value. Variables are globally available across different states of the finite-state machine(s) and can be used by different pages within a project. In this way, variables provide a way represent addition information across states and this information can be used to control the behavior and the visual presentation of complex items within Tasks. The initial value of variables is defined (see section 4.2.1 and can be adopted to Task-specific values using Task Initialization Rules (see section 4.5). Values of variables can also be changed within transitions of the finite-state machine (i.e., using Operators as described in subsection 4.4.6). Moreover, variables can be linked to specific input components (see section 4.2.2).

Variables can be used at various places, for instance, to formulate conditional rules in the finite-state machine (see 4.4.5).  Moreover, in connection with Value Maps (see section 4.2.4) and Map-based Value Displays (see subsection 4.2.5) variables play an essential role for the connection of static and dynamic content. In the following, Variables are introduced in more detail beginning with their definition (see section 4.2.1). Specific values of variables can be labeled by naming them (see section 4.2.1).


4.2.1 Introduction

 

Variables are defined in the Browse Variables view of the CBA ItemBuilder that can be requested using the entry Browse Variables of the menu Project (or using the icon ). After requesting Browse Variables an editor opens up in the right part of the CBA ItemBuilder as shown in Figure 4.4 (see also section 3.1.4).


[image: Editor for *Variables*.]

FIGURE 4.4: Editor for Variables.






Variable Definition: Adding new variables with the button Add Variable and editing existing variables using the button Edit opens the dialog Set Variable attributes as shown in Figure 4.5. The Name of variables must be unique and follow the rules already described for project names and page name (i.e., only letters, digits, and underscores are allowed and the first character must not be a digit).

(ref:IBSetVariableAttributesDialog01) Set Variable attributes dialog.


[image: (ref:IBSetVariableAttributesDialog01)]

FIGURE 4.5: (ref:IBSetVariableAttributesDialog01)




 

Each variable requires a Type (either INTEGER, NUMBER, STRING or BOOLEAN) and the provided Value must fit to the variable Type. The value is only the default value of variables that can be changed in various was.



Named Variable Values: Individual values of variables can be assigned to labels. These so-called Named Values help to make syntax that uses the variables easier to read and understand.



Specific values can be defined as Named Values for a better readability of CBA ItemBuilder syntax.


For defined variables the button Add Named Value can be used to add new Named Values (and the buttons Edit and Delete can be used to modify or removed Named Values). Named Values are CBA ItemBuilder’s approach to improve readability of syntax that implements different interpretation on specific values of variables. Instead of adding a comment that the value 11 represents, for instance, Visited and the value 22 of a variable represents Not Visited, named values can be defined for variable values.

(ref:IBNamedVariablesExample01) Set Named Value attributes dialog.


[image: (ref:IBNamedVariablesExample01)]

FIGURE 4.6: (ref:IBNamedVariablesExample01)




Named variables can be used to structure the syntax of finite-state machines (see section 4.4). To display different labels according to variable values, so-called Value Maps can be used as described in section 4.2.4).

Change Variable Values: The prerequisite to use variables for dynamic content is that values of variables can be changed at runtime, either in connection with a user interaction or based on triggering events, such as time-controlled finite-state machine events. Values of variables can be changed with different mechanisms, which are listed in the following:


	Special input elements (so-called Value Inputs) can be bound directly to variables, so that a change to the input elements directly causes a change of the variable values. Details about Value Inputs are described in the section 4.2.2.


	Drag-and-drop operations can also be used to change the values of variables. The drag-and-drop fields (using so-called MapBasedVariableDisplays) are assigned to variables whose values are changed by the drag and drop user interaction. A detailed description of the possibilities for implementing drag and drop in the CBA ItemBuilder can be found in the section 4.2.6.




 


	Variable values can be set or changed using set()- and reset()-Operators in Conditional Links (see section 4.3.3) and in Rules of the Finite-State Machine (see section 4.4.6).





Variables keep their values across page (and state changes in the finite-state machine, below). Thus variables can be used to represent additional information that describe the behavior and visual presentation of items, in addition to the Current State of finite-state machine(s).

Use Variable Values: The value of variables can be used fur different purposes, for instance, to display dynamic numbers, texts, images and videos (see section 4.2.5), to specific conditions for scoring (see section 5.3.5) or to create conditional Finite-State Machine Rules (see section 4.4.5).



4.2.2 Value Inputs

The CBA ItemBuilder provides some components, that change the value of Variables in line with user interactions. In particular sliders (ScaleVariableInput), spinners (SpinnerVariableInput) and input fields (VariableValueInput) are directly linked to variables of type INTEGER (see Figure 4.7).


[image: Item illustrating the use of variables and value inputs ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ValueInputExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ValueInputExample.zip)).]

FIGURE 4.7: Item illustrating the use of variables and value inputs (html|ib).






Link Variables to Components: Components that can be linked to variables (e.g., Value Inputs) provide a context menu entry Link Variable as shown in Figure 4.8. Analogous to the definition of Links, the use images, audio and video files, the assignment of Events and Value Maps, the connection of components to variables is made via the context menu entry Link Variable.

Components of type VariableValueInput and SpinnerVariableInput only need to be linked to a variable. Changes in the input immediately change the value of the linked variable. Components of type ScaleVariableInput also need to be linked to a so-called Value Map (see section 4.2.4).

(ref:IBLinkVariableToComponent01) Context menu in the Page Editor to Link Variables.


[image: (ref:IBLinkVariableToComponent01)]

FIGURE 4.8: (ref:IBLinkVariableToComponent01)







Attach ScaleValueInput to Buttons: Components of type Button (see section 3.11.2) can be linked directly to ScaleValueInput so that a click on a particular button increases or decreases the value of the linked variable. The numerical value to increase or decrese the variable must be specified as the property Increment in the Properties view (can be a positive or negative integer number, default is 00). To assign a Button to a ScaleValueInput use the entry Attach ScaleValueInput in the context menu of a Button in the Page Editor and select the ScaleValueInput in the dialog (see Figure 4.9).


[image: Dialog for assigning a `Button` to a `ScaleValueInput`.]

FIGURE 4.9: Dialog for assigning a Button to a ScaleValueInput.






4.2.3 Variable Value Displays



An essential use of variables is to display values within assessment components, i.e., on the side of an item. For this use case, VariableValueDisplays are provided as component that show the value of linked variables plain and unchanged. Examples of using components of type VariableValueDisplay can be seen in the right part of Figure 4.7 and in Figure 4.10.


[image: Item illustrating layout option for `VariableValueDisplays` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VariableValueDisplayLayoutExamples/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VariableValueDisplayLayoutExamples.zip)).]

FIGURE 4.10: Item illustrating layout option for VariableValueDisplays (html|ib).





Layout: Font family, font size and font color, text alignment and text decoration as well as borders and transparency of VariableValueDisplays can be defined in the Properties view.

Events: VariableValueDisplays raise an FSM Event (see section 4.4.3 and Figure 4.35) and the Variable Displays as well as Maps-based Variable Displays (see section 4.2.5) can be used to implement Drag-and-Drop user interactions (with the additional FSM Events, see section 4.2.6).



4.2.4 Value Maps



Variable values can not only be displayed 1:1, but can also be displayed as images, audio or video files or as text with the help of translation tables. The assignment of values of a variable to other values is defined in the CBA ItemBuilder with the help of Value Maps.

 

Value Maps are defined in the Value Maps view of the CBA ItemBuilder that can be requested using the entry Browse Value Maps of the menu Project (or using the icon ). After requesting Browse Value Maps an editor opens up in the right part of the CBA ItemBuilder (see also section 3.1.4). The Value Maps view as shown in Figure 3.1.4 contains an upper table of all defined Value Maps with a Value Map Details view in the lower part.


[image: Editor for *Value Maps*.]

FIGURE 4.11: Editor for Value Maps.




Value Maps can be added using the Add button in the upper table, requiring a name that can be changed using the Edit button. The value maps in the upper table can be re-ordered using buttons Up and Down.

Once a Value Map has been created and selected in the upper table, new entries can be added with the Add button and modified with Edit.

In the example in Figure 4.11, the Value Map M_Example is selected in the upper pane, so the Value Map Details view shows the defined values. For each definition a Guard is necessary, together with at least one text, one image, one audio resource or one video resource. It is also possible to assign different resources directly to a Guard. In the example in Figure 4.11, Guards 11, 22, 33, and 44 are each assigned a text, an image, and a video.


[image: Dialog *Set value map detail entry attributes*.]

FIGURE 4.12: Dialog Set value map detail entry attributes.




Text resources can be defined directly in the editor in Figure 4.12 by typing. Images, audio, and video files refer to the resources imported via the Resource Browser (see section 3.10.1) in a CBA ItemBuilder Project File.


[image: Dialog for defining *Guards* using the dialog *Set value for column Guard*.]

FIGURE 4.13: Dialog for defining Guards using the dialog Set value for column Guard.




For the definition of Guards, a choice can be made between the Default Value (i.e., the value when no other Guard applies), a single numerical value (Single Value), and a range between two numerical values (Interval), see Figure 4.13).

Variables and Value Maps are permanently assigned to components when designing pages. However, both can be freely combined between different components, i.e., a Variable can be used with one Value Map in one component and with an additional Value Map in another component.



4.2.5 Maps-based Variable Displays



Components of type MapBasedVariableDisplay can be used with Variables for displaying dynamic content in the CBA ItemBuilder pages. A static example is shown in Figure 4.14 (see section 4.2.6 for the use of MapBasedVariableDisplays in combination with Drag-and-Drop).


[image: Item illustrating different variable inputs ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SimpleValueDisplayExampleTrafficLight/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SimpleValueDisplayExampleTrafficLight.zip)).]

FIGURE 4.14: Item illustrating different variable inputs (html|ib).




The component MapBasedVariableDisplay can be used to display either text or images or to play audio or video files (to show the raw number of a Variable the component VariableValueDispaly as described in section 4.2.3 is provided). To define which part of the Value Map should be used, the property Value Display Type must be defined in the Properties view (see Figure 4.15).


[image: Property *Value Display Type* for components of type `MapBasedVariableDisplay` in the *Properties* view.]

FIGURE 4.15: Property Value Display Type for components of type MapBasedVariableDisplay in the Properties view.





[image: Item illustrating layout option for `MapBasedVariableValueDisplay` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/MapBasedVariableValueDisplayLayoutExamples/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/MapBasedVariableValueDisplayLayoutExamples.zip)).]

FIGURE 4.16: Item illustrating layout option for MapBasedVariableValueDisplay (html|ib).






Link Value Map to Components: All components that can use Value Maps, for instance, MapBasedVariableDisplays, provide an entry Link Value Map in the context menu. In the then opening editor Set Value Map, an existing Value Map can be selected. To remove an assigned Value Map, the Set Value Map editor allows deselection.



4.2.6 Drag-and-Drop

Drag-and-drop response formats can now be implemented using Variables (see section 4.2) and Maps-based Variable Displays (see section 4.2.5). Let’s start with two examples from real assessments (Jiang et al. 2021) shown in Figure 4.17 and 4.18 (see Gong et al. 2022 for an example how to analyze the log data collected with these items).


[image: Item 1 from @JiangUsingprocessdata2021 illustrating Drag-and-Drop ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/JiangEtAl2021Item01/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/JiangEtAl2021Item01.zip)).]

FIGURE 4.17: Item 1 from Jiang et al. (2021) illustrating Drag-and-Drop (html|ib).





[image: Item 2 from Jiang et al. (2021) illustrating Drag-and-Drop ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/JiangEtAl2021Item02/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/JiangEtAl2021Item02.zip)).]

FIGURE 4.18: Item 2 from Jiang et al. (2021) illustrating Drag-and-Drop (html|ib).








Drag-and-drop operations with fixed drop points are implemented using Maps-based Variable Displays, whose associated variables change their value on drop to the value that corresponds the dragged element.


Figure 4.19 illustrates how value of variables are changed with drag-and-drop operations. Inspect the example and first of all see, how the Dragged element corresponds to the variable value of the MapBasedVariableDisplay at which the drag-and-drop operation was started. The variable value is shown in the item, as soon as an element is dragged.


[image: Drag-and-drop example illustrating the use of variables ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/DragAndDropIllustratingVariablesExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/DragAndDropIllustratingVariablesExample.zip)).]

FIGURE 4.19: Drag-and-drop example illustrating the use of variables (html|ib).




At the moment when a drag-and-drop operation is completed (i.e. at drop) the values of the variables are swapped in this example (drag-and-drop mode is DROP_SWITCH, see Figure 4.21 for alternative configurations).



  
  
  ch007.xhtml
  
  




5 Scoring of Tasks



This chapter describes how scoring can be defined in CBA ItemBuilder Projects Files. Scoring is always defined on the task level (see section 3.6 for details on defining tasks). Accordingly, before scoring can be implemented in newly created CBA ItemBuilder projects files, a Task must be configured (see section 3.6 for details). A second prerequisite for defining the scoring of Tasks is to define names for all required components. That means that User Defined Ids (see subsection 3.7.4 for details) is required for the components used to gather responses. Human readable User Defined Ids are suggested to remember the meaning of particular identifiers when using them, for instance, in the syntax definition of scoring rules. Since this definition of scoring rules is based on the User Defined Ids, systematically defined and easily readable IDs simplify the creation and validation of scoring rules for item authors.

The definition of explicit scoring rules is not mandatory for the use of CBA ItemBuilder items, but it provides the most flexible way to combine evidence into scoring. Alternatively, 1) the so-called component state, that is, the values selected or entered for all input elements, can be automatically stored by the test assembly and deployment software (see chapter 7). Moreover, 2) the components can be linked to FSM variables (applies to version 10.0) and the last value of FSM variables when a task is exited can be used. Finally, 3), log data can also contain all changes of component values and it is often possible, to infer about the final response from the collected log events (see section 1.6, and Kroehne and Goldhammer (2018) for response-completeness of log data).

Motivation: Explicit automatic scoring of items can be necessary at runtime when scoring results that incorporate logical rules are required either for adaptive test assemblies (branched testing, multi-stage testing, or adaptive testing, see section 2.7.4), for the different feedback purposes (see section 2.9), or to monitor the test-taking processes. Scoring of CBA ItemBuilder Tasks is evaluated at task switches (i.e., when tasks are changed from one task to another). Task switches can either be triggered from within the Task (using Runtime Commands, see section 3.12, or from outside (by the deployment software, for instance, because of a global timeout, see section 7.2.8). Having the scoring definition implemented within the assessment components created with the CBA ItemBuilder can also simplify data post-processing workflows (see section 8.6) and sharing of items (for instance, as Open Educational Resources, see section 8.7.4). Hence, automatic scoring provides essential advantages over above mentioned alternatives: It standardizes the scoring procedures and gives immediate access to the scored results.

Implementing the scoring rules within the CBA ItemBuilder project files comes with a second advantage. The scoring definition becomes independent from the deployment software (see chapter 7) and the approach used for data post-processing (see section 8.4.2). Scoring embedded in CBA ItemBuilder projects can be tested already during item development and will be available after distributing items (as CBA ItemBuilder projects). An essential tool for checking the scoring in CBA ItemBuilder items is the so-called Scoring Debugger, as described already in section 1.5. The Scoring Debugger can be used to inspect the scoring live during Preview.


5.1 Terminology, Concepts and User Interface



The core component for the definition of the automatic scoring is the design of syntax conditions, which can be evaluated based on inputs (i.e., Component State of elements) and operators (i.e., incorporating the states in the internal finite-state machine(s) and the visited pages).

User Defined Id’s: The link between components and the syntax is provided by the User Defined Id's. Using the main menu Project > Edit all user defined IDs all named components of a CBA ItemBuilder Project File can be displayed. As shown in Figure 5.1, for a simple multiple-choice item, various components of type Checkbox can be defined, all fo them with a unique UserDefinedId.


[image: `UserDefinedIds` defined for example item shown in Figure 5.2.]

FIGURE 5.1: UserDefinedIds defined for example item shown in Figure 5.2.




Figure 5.2 shows a simple item to illustrate the scoring of a multiple-choice item. The item was created by adding a HTMLTextField (see subsection 3.8.2 for the instruction and the four Chechboxes (see subsection 3.9.3). A simple scoring of this item might distinguish the conditions Correct (Jaguar and Panda) and Wrong (Jaguar and Panda are not selected or additional wrong options are selected). If a test-taker never selected any Chechboxe at all, this might be called a Missing response (see section 5.3.11 for details).


[image: Example for scoring a multiple choice item ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ScoringIntroductionExample1/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ScoringIntroductionExample1.zip)).]

FIGURE 5.2: Example for scoring a multiple choice item (html|ib).




The CBA ItemBuilder allows to define scoring-conditions using these UserDefinedIds. The conditions are labeled of Hits (i.e., Hit-conditions) and Misses (i.e., Mis-conditions) combining UserDefinedIds of components, and additional functional operators (see appendix 10.2 for all operators), if necessary, combined with logical operators. Each condition represents a nominal conditions that is to be differentiated when computing the value of a scoring variable (called Class). The item contains one Task (defined in the Task-Editor, see subsection 3.6. The Task-Editor is also used to define the scoring (see Figure 5.3).


[image: *Task-Editor* with one *Task* and three *Hit*-conditions for the item shown in Figure 5.2.]

FIGURE 5.3: Task-Editor with one Task and three Hit-conditions for the item shown in Figure 5.2.




Class: Scoring is defined using nominal Hit-conditions. Each conditions corresponds to a potential value of a variable. To specify the relationship of values to variables, Hit-conditions (i.e., values) are assigned to Classes (i.e., Classes are equivalent to Variables in the final data set), as shown in Figure 5.4. The variable Score can have the three potential values Correct, Wrong and Omitted.


[image: *Class Definition Dialog* for the item shown in Figure 5.2.]

FIGURE 5.4: Class Definition Dialog for the item shown in Figure 5.2.




Name: Each hit- and miss-condition requires a unique name, that is defined in the Task-Editor (shown in Figure 5.3). This name represents the nominal value of the variable, if the corresponding condition is met (i.e., if the hit is active).

Condition Syntax: Each Hit-condition is defined by providing a scoring syntax. The example item shown in Figure 5.2 contains three different Hit, and the syntax for the conditions are shown in the editor for Conditions in Figure 5.5. The first condition for the hit Correct combines the User Defined Id's of the four Checkboxes with logical operators (using the CBA ItemBuilder specific bracketing of expressions, see section 4.1.3).


[image: *Condition Syntax* for the *Hit*-condition `Correct` of the item shown in Figure 5.2.]

FIGURE 5.5: Condition Syntax for the Hit-condition Correct of the item shown in Figure 5.2.




However, the syntax for scoring rules (see section 5.3) also allows using scoring operators, for instance, to incorporate information from the dynamic part of CBA ItemBuilder tasks. Operators are illustrated in Figure 5.5 in the syntax for the hit-condition for Wrong, which evaluates to true if the item’s current state is Answered. Note that the state Answered is implemented using a simple finite-state machine (see section 4.4 for details).



Scoring conditions can either be defined mutually exlusive (default, see section 5.3.3), or the order of conditions is incorporated (as used in the example in Figure 5.2). This suggested option is activated by selecting Use first active hit per class (applies to all tasks). (see right part of Figure 5.5).


Scoring Debug Window: The Scoring Debug Window (already introduced in section 1.5) can be used to explore the scoring of the example item shown in Figure 5.2, as shown in Figure 5.6. The Scoring Debug Window can be requested during item development in the Preview and is also available in the examples embedded in the online version of this book.


[image: Screenshot of the *Scoring Debug Window* in a preview of the item shown in Figure 5.2.]

FIGURE 5.6: Screenshot of the Scoring Debug Window in a preview of the item shown in Figure 5.2.




Multiple Classes: If components are to be used only in a particular way to form outcome variables, defining scoring constraints may be more onerous than strictly necessary (see section 5.2 for an alternative). The full potential of CBA ItemBuilder scoring unfolds in the use cases when different summaries of answers to variables are to be used. This is illustrated in Figure 5.7 for a simple Likert-style item. Assume that two variables should be created: One variable containing the response (Class: Response) and one indicating agreement or disagreement [Class: Style, as used, for instance, in models to investigate response style; cf. Böckenholt and Meiser (2017) and others].


[image: Example for scoring a Likert-style item into two variables ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ScoringIntroductionExample2/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ScoringIntroductionExample2.zip)).]

FIGURE 5.7: Example for scoring a Likert-style item into two variables (html|ib).




By introducing the layer of hit definitions (described in detail in section 5.3), the CBA ItemBuilder allows the creation of flexible scoring for responses that can combine multiple components and can result in multiple variables (i.e., classes). Use cases not only include questionnaires (as the example in Figure 5.7) but can also be found for cognitive assessment, e.g., when both the raw response and the automatically scored response (correct vs. incorrect) are to be stored or when dichotomous and polytomous scoring is to be considered. Use cases for explicit scoring with multiple classes also arise if, for example, time measures are included in the scoring of responses.

Result-Text: Hit- and miss-conditions can be used to define evidence in terms of categorical values, which can then be assigned to classes to be used as outcome variables. However, also entered text and numbers are required as result variables. To copy text responses to result variables, the CBA ItemBuilder provides the result_text()-operator. The underlying idea is that each class (i.e., variable) can provide a Result-Text in addition to the name of the active hit. The condition defines which particular value is used as Result-Text. The (first) active hit-/miss-condition of a class defines which text is copied into the Result-Text.

The item shown in Figure 5.8 illustrates the use of the Result-Text. The first class (Var1) is used for question 1: Class Var1 has only one hit-condition with the syntax result_text(input1). This condition is always true, and whatever is entered in the SingleLineInputField with the User-Defined Id input1 is copied to the Result-Text for Var1. For question 2, the class Var2 is used with two hit conditions. When a text is entered into the InputFiled with the User-Defined Id input2 (i.e., the text is not empty checked with the condition matches(input2,"")), the value is copied to the Result-Text using the operator result_text(input2) in the condition Q2_Text. When nothing is entered, the Result-Text is filled with the string Missing (see hit-condition Q2_Missing). The class Var3 is used for question 3. The class contains either the selected option (A or B) in the Result-Text (see hit-conditions Q3_A and Q3_B). If neither A, B or Other is selected, the string Missing is copied to the * Result-Text* (see hit-condition Q3_Missing). Two hit-conditions are defined that deal with conditions that Other is selected. If no text is entered into the SingleLineInputField with the User-Defined Id input3, the text Other: Not Specified is copied to the Result-Text (see hit-condition Q3_OtherNotSpecified). If a text is entered, the Result-Text is filled with the string Other: followed by the provided text. This is achieved by using an argument list for the restult_text()-operator (see 4.1.5). Note that Var3 will not contain the text entered into input3 if A or B is selected. This issue is addressed by defining Var4 that contains the text entered in input3, even if Other is not selected.


[image: Item illustrating scoring with `result_text()`-operator ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ResultTextOperatorExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ResultTextOperatorExample.zip)).]

FIGURE 5.8: Item illustrating scoring with result_text()-operator (html|ib).






5.2 Scoring using FSM Variables

Using items provided by Toplak, West, and Stanovich (2014) the item in Figure 5.9 illustrates scoring using variables. In this example, the finite-state machine updates variable values, designed to allow immediate feedback (correct response, intuitive incorrect responses, and any other wrong response) and to compute the total score for all seven items of the Cognitive Reflection Test.


[image: Example item illustrating scoring with variables ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/CognitiveReflectionTestExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/CognitiveReflectionTestExample.zip)).]

FIGURE 5.9: Example item illustrating scoring with variables (html|ib).






CBA ItemBuilder Version 10.0 will support a simple scoring definition by providing default scoring for components (e.g., Checkboxes) and groups (e.g., RadioButtonGroup and FrameSelectGroups) using FSM Variables (instead of so-called Hit-/Mis-conditions).




5.3 Definition of Explicit Scoring Rules




5.3.1 UserDefinedId's as String Literals

An important part of possible scoring rules are input elements, i.e. components for the design of items, which have a value (i.e., are either selected or un-selected). To refer to the value of a component in a Hit- or Miss-condition, it is sufficient to include the UserDefinedId of the respective component into the condition-syntax. For instance, for a checkbox with the UserDefinedId: myCheckbox, the string literal myCheckbox is interpreted as TRUE if the checkbox is selected, when the syntax is evaluated. If the checkbox is not selected, the string literal myCheckbox is interpreted with the value FALSE.



The checked/unchecked state of CheckBox - components, the selected/unselected state of RadioButton - components, the toggle state of Buttons in toggling mode and the selected/unselected-state of ComboBoxItem in a ComboBox can be used to define Hit- or Mis- conditions by simply referring to the UserDefinedId of the component.





5.3.2 Syntax for Scoring Rules

The item scoring mechanism implemented in CBA ItemBuilder goes beyond simple mapping of Scoring Conditions (i.e., hit- and miss conditions) to component states. This is enabled by providing the possibility to formulate conditions as arbitrary combinations of statements using a so-called Domain Specific Language (DSL, i.e., by using a specific syntax).



To combine UserDefinedIds of the components to logical expressions, the following logical operators can be used:


	A and B: true if A and B evaluate to true.

	A or B: true if A or B evaluate to true.

	not  A: true if A is not true.



Flexible combinations of conditions are possible with the basic operators and, or and not. Use the Scoring Debug Window (Ctrl / Strg + S, see section 1.5) to explore the hit conditions in the item shown in Figure 5.10.


[image: Hit definition with logical expressions (`and`, `or`, `not`; [html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/HitdefinitionAndANDOr/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/HitdefinitionAndANDOr.zip)).]

FIGURE 5.10: Hit definition with logical expressions (and, or, not; html|ib).




Notice the specific bracketing in the last hit condition shown in Figure 5.10: (((A and B) and C) and D). This condition illustrates that combining multiple Boolean expressions requires to include brackets so that the statement can be decomposed into pairs: A and B, (A and B) and C, and finally ((A and B) and C) and D.



It is important to note that the use of brackets is required to formulate statements with more than two conditions (see section 4.1.3).


For a number of scoring tasks, simply checking the Boolean value of components is not sufficient. Therefore, the CBA ItemBuilder provides functions in the scoring syntax (so-called operators), which can be used within the scoring syntax to take into account properties of the current task for the formulation of hit and miss conditions.



5.3.3 Sequential Evaluation of Scoring Rules

By default (i.e, when not configured differently), Hit- and Miss-conditions are evaluated independently. If variables are created, i.e., hits are assigned to classes, a central condition must be met: At any time, precisely one hit must be active for each class. This condition follows directly from using hits as (categorical) values for variables. Consequently, hit conditions within a class must always be formulated in such a way that they are mutually exclusive. To support checking this condition, the CBA ItemBuilder’s Preview of tasks provides the Scoring Debug Window, which contains a red exclamation mark once multiple hits are active for a class (see Figure 5.10).

However, a powerful alternative is to active the sequential evaluation of scoring conditions in the Task-Editor by selecting the checkbox Use first active hit/miss per class (applies to all tasks). If this option is activated, the evaluation is performed sequentially, starting with the first hit condition of a class. Only if the first hit is not true, the second hit is evaluated. Accordingly, a last hit (when no other conditions evaluate to true) can be added, for instance, to simplify missing value coding (see the item shown in Figure 5.2 as an example).1



Hit- and Miss-Conditions need to be mutually exclusive (i.e., at any time, precisely one hit must be active for each class), if the option Use first active hit/miss per class (applies to all tasks) is not activated.




5.3.4 Use of Text Responses in Scoring Rules

Text responses can be automatically scored inside of the CBA ItemBuilder using keywords or pattern. The provided matches()-operator takes two arguments: The UserDefinedId of the component used to collect the text response (see section 3.9.1) and a regular expression (see section 6.1 for details).

matches(UserDefinedId, RegularExpression)


The matches()-operator can be used with regular expressions (see section 6.1) and with concrete texts. Examples for using the matches()-operator are illustrated in Figure 5.11.


[image: Different *Hit-* definitions using the `matches()`-operator ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/MatchesExampleScoring/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/MatchesExampleScoring.zip)).]

FIGURE 5.11: Different Hit- definitions using the matches()-operator (html|ib).




Note that the logical operators and, or, and not can be combined with several matches()-operators and other conditions. Hence, there is no need to formulate too complex regular expressions since multiple expressions can be combined using multiple matches()-operators.



5.3.5 Use of FSM-Variables in Scoring Rules

The value of FSM-Variables can be used within scoring rules (i.e., Hit- and Mis-conditions). This is achieved using the variable_in()-operator:



variable_in(FSMVariable,SetOfValues)


An examples for using the variable_in()-operator is provided in the Figure 5.12 for the scoring of a Drag-and-Drop response format, implemented using FSM Variables (see section 4.2.6 for the implementation of Drag-and-Drop).


[image: Use of *FSM-Variables* in *Scoring-Conditions* with the `variable_in()`-operator ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VariableAndDragAndDropScoring/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VariableAndDragAndDropScoring.zip)).]

FIGURE 5.12: Use of FSM-Variables in Scoring-Conditions with the variable_in()-operator (html|ib).




The visited_all_values_of_variable()-operator can be used to check whether a variable has taken one or more concrete values in the course of test-taking (see Figure 5.13 for an example):



visited_all_values_of_variable(FSMVariable,SetOfValues)



[image: Using *set of values* and `visited_all_values_of_variable()`-operator in *Scoring-Conditions* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VariableSetsScoring/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VariableSetsScoring.zip)).]

FIGURE 5.13: Using set of values and visited_all_values_of_variable()-operator in Scoring-Conditions (html|ib).






5.3.6 Use of Positions for Free Drag-and-Drop in Scoring Rules

As described in section 4.2.6, the CBA ItemBuilder supports free drag and drop. The panel_position_range()-operator can be used to score the position of drag-and-drop elements (see Figure 5.14 for an example):

panel_position_range(Container, [CheckNonMembers], XStart, XEnd, YStart, YEnd, 
                     Center, Component, Component, ...)


The operator evaluates to true if the (X,Y) positions of all given Components in the given Container are within the range given by XStart, XEnd, YStart and YEnd relative to the container’s (X,Y) position. If the flag CheckNonMembers is not give or set to true, the operator only evaluates to true if the (X,Y)-positions of all other components in the given Container are outside the given range. The upper left corner of the component is used as (X,Y)-position of a Component if the flag Center is not provided as true.


[image: Example for scoring free drag and drop using the `panel_position_range()`-operator ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/FreeDragAndDropScoring/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/FreeDragAndDropScoring.zip)).]

FIGURE 5.14: Example for scoring free drag and drop using the panel_position_range()-operator (html|ib).




Alternatively to the position of drag and drop element, the distance to score can also be evaluated. The panel_distance_range()-operator returns true if the mutual distance of all given Components in the given Container are within the given range between MinDistance and MaxDistance:

panel_distance_range(Container, [CheckNonMembers], MinDistance, 
                     MaxDistance, Center, Component, Component, ...)




5.3.7 Use of Events, States and Interaction in Scoring Rules

The CBA ItemBuilder provides various operators to incorporate events and the number of interactions into scoring conditions.

Number of Events: The number of events that have been raised during the execution of the current task can be used in scoring conditions. The CBA ItemBuilder considers an event to be raised even if it did not trigger a transition, and the count includes events raised by the raise()-operator:



raised_events()


If only the number of specific events should be counted, the raised_nb_events()-operator can be used:



raised_nb_events(SetOfEvents)


An even more advanced version of the raised_nb_events()-operator exist, that can be used to count how often one or multiple events were raised, while the item was in a particular state:



raised_nb_events_in_state(State, SetOfEvents)


Indicators for Events: In addition to the operators that count the events (of a particular type / within states), operators exist to check if an event was triggered. These operators evaluate to true (instead of returning the frequencies). The raised_all_events(EventA, EventB) return true if all events listed in the set of events (e.g., EventA and EventB) were raised:



raised_all_events(SetOfEvents)


Again, an more advanced version of the raised_nb_events_in_state()-operator exist, that can be used to check if one or multiple events were raised, while the item was in a particular state:



raised_all_events_in_state(State, SetOfEvents)


The following item shown in Figure 5.15 illustrates the use of the event-related operators.


[image: Example for using events for scoring ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/RaisedEventScoringExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/RaisedEventScoringExample.zip)).]

FIGURE 5.15: Example for using events for scoring (html|ib).




Number of State Visits: The visited_nb_states()-operator return the number of the visits for a set of states during the execution of the current task:



visited_nb_states(State, State, ...)


Indicators State: The is_last_state()-operator returns true if the last state the finite-state machine is one of the given states in the SetOfStates:

is_last_state(SetOfStates)


While the is_last_state()-operator refers to the last state of the finite-state machine, the visited_all_states()-operator can be used the check if all states listed in the SetOfStates were visited during the execution of the current task:





visited_all_states(SetOfStates)


Number of Interactions: A simple generic operator is provided that counts the number of user-interactions within the current task:

user_interactions()

Note that this operator counts the total number of interactions within the running task. Counting specific interactions in FSM variables is possible using the finite-state machine (see section 4.4).

Elapsed Time: Another generic operator is provided that measures the elapsed time in the current task:

elapsedTime()

The scoring-operator elapsedTime() counts the total time in the current task. Measuring more specific time intervals is possible using finite-state machines (see section 4.4.6 and the example provided in Figure 4.60).



5.3.8 Use of Specific Operators in Scoring Rules

Tree Components: The scoring of response formats created using components of type Tree, TreeView and TreeChildArea (see section 3.9.9) is supported with the following operators:


	The operator current_node() allows to check if in a particular Tree a RegularExpression matches to the node path ID of the current node:



current_node(Tree, RegularExpression)



	The operator exists_nodes() returns number of nodes in the given Tree whose node path ID matches at least one of the given RegularExpressions (each node counts once only):



exists_nodes(Tree, RegularExpression, RegularExpression, ...)



	The operator visited_nodes() returns number of visited nodes in the given Tree whose node path ID matches at least one of the given RegularExpressions (each node counts once only):



visited_nodes(Tree, RegularExpression, RegularExpression, ...)



	The operator matches_nodes() returns the number of nodes in the given Tree whose node path ID matches the NodeIdPattern and whose column values match the specified ColumnPatterns. The first ColumnPattern corresponds to the node name, the second ColumnPattern to the first additional column, etc. (each node counts once only).



matches_nodes(Tree, NodeIdPattern, ColumnPattern, ColumnPattern, ...)


Pages: An operator current_page() is provided to check if a specified Page is currently displayed (or is displayed within the specified PageArea):

current_page(Page)
current_page(Page, PageArea)

For browser-components that support the bookmark function (see section 3.13.2) the following operator can be used to check if a page was bookmarked:

bookmarked(Page)

Spread Sheets: Operator to score value (or the computed formula) entered in a spreadsheet table with a given UserDefinedId (see section 3.9.8) as integer value:

integer_value(UserDefinedId, RoundingMode, Default)

The parameter RoundingMode can take the values up. down, half_up and half_down. If the text content is empty or does not represent a number, the Default value is returned.

To score the entered formula (instead of the value), the matches()-operator provides the additional argument Selector. If the value formula is requested, the operator evaluates the formula text of a spreadsheet table cell (instead of the formula value):

matches(Component, RegularExpression, Selector) 

Highlighting: The following operators are provided to score the response format of multiple text highlighting (see section 3.8.3):

highlighted(RichText, RichText, ...)

complete(Selection, Selection, ...)

partial(Selection, Selection, ...)



5.3.9 Note on Scoring with PageAreas

PageAreas (see section 4.1.4) can be used to embed existing pages as content when designing pages. The CBA ItemBuilder allows that identical content can be re-used multiple times in different PageAreas on a single page, as illustrated in Figure 5.16. It is therefore generally necessary to add the UserDefinedId of the PageArea to all references to components displayed within PageAreas.



Components that are displayed in PageAreas need to be addressed using the following scheme: {UserDefinedId-of-PageArea}.{UserDefinedId-of_Component}.



[image: Item illustrating scoring when *PageAreas* are used ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/PageAreaScoringExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/PageAreaScoringExample.zip)).]

FIGURE 5.16: Item illustrating scoring when PageAreas are used (html|ib).






5.3.10 Scoring Rules and Result Text

As shown in Figure 5.8, the CBA ItemBuilder integrates the handling of numerical and string responses into the Scoring Rules (i.e., Hit- and Miss-conditions) using the result_text()-operator. For each class, the active hit is determined first. If the option Use first active hit/miss per class (applies to all tasks) is activated (see section 5.3.3), this is the first condition within a class that applies. Otherwise item authors need to make sure that all conditions are mutually exclusive within each class. If the active hit contains a result_text()-operator, numerical or text input is provided as Result-Text.



5.3.11 Missing Value Coding for Tasks with Multiple Pages

The following examples shows, how to define scoring for single choice and multiple choice items including hits for not reached items and omitted responses. For this purpose, a variable is defined in the finite-state machine that counts how often a page was visited.

Items without response on a not visited page are coded as not reached (NR), missing responses on visited pages are coded as omitted response (OR). For more details, see the item shown in Figure 5.17 and use the Scoring Debug Window (as described in section 1.5.


[image: Item illustrating *Missing Value Coding* for a multi-paged item ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SimpleMCScoringExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SimpleMCScoringExample.zip)).]

FIGURE 5.17: Item illustrating Missing Value Coding for a multi-paged item (html|ib).







5.4 Automatically Generated Variables



The CBA ItemBuilder runtime will create some selected variables automatically:


	reactionTime: Time (in milliseconds) between the start of the task execution and the first user interaction.

	execTime: Time in (milliseconds) since the start of this task execution.

	nbInteractions: Number of user interactions since start of the current task execution.



Deployment software for CBA ItemBuilder tasks (see chapter 7) can use identical tasks multiple times and can allow to re-visit tasks. For that purpose, the runtime also computes the cumulative variables:


	reactionTimeTotal: Accumulated time (in milliseconds) between the start of the task execution and the first user interactions in previous executions of the task (excluding the last execution, that can be found in the variable reactionTime).

	execTimeTotal: Accumulated time (in milliseconds) in previous executions of the task (excluding the last execution, that can be found in the variable execTime).

	nbInteractionsTotal: Accumulated number of user interactions in previous executions of the task (excluding the last execution, that can be found in the variable nbInteractions).




5.4.1 Scoring Complete Tasks with Weights



This scoring is included in the CBA ItemBuilder to maintain compatibility with old items. It is considered outdated, as it only allows to derive one score per tasks.


If only dichotomous scoring is required for the complete Task, the CBA ItemBuilder implemented a simple approach.


	MinHits: For each Task can be defined, how many Hit-conditions must be fulfilled, that the task is scored as True.

	Weight: Each Hit-/ and Miss-conditions is assigned to a Weight.

	Class: Each Hit-/ and Miss-conditions is assigned to a Class and to each Class either Hit-/ and Miss-conditions are assigned.



Each task provides the following results:


	result: Overall result (11 if the at least the number of hits is active that is defined as the property MinHits, 00 otherwise).

	nb_Hits: Number of (active) hits.

	Hit_weight: Total weight of hits.

	nb_Misses: Number of (active) misses.

	Miss_weight: Total weight of misses.

	credit_Class: Name of the Class with the highest value. The value is computed as the sum of weight for all active Hits (in classes with Hits) or all active Misses (in classes with Misses).

	credit_weight: Weight of the class with the highest class weight.







5.5 Checklist and Complete Workflow



As a summary the following list describes the typical workflow that is required for implementing automatic scoring in the CBA ItemBuilder:


	Prepare the implementation of scoring by defining explicit User Defined IDs (see 3.7.4) for all components that should be used for scoring. It is not possible to define scoring using the automatically generated User Defined IDs that start with a $-sign.


	Define a task as an entry point for the CBA ItemBuilder project. Since the scoring definition is done per task, a task must always be defined first (see section 3.6 for details).


	When tasks are defined, define Classes. For each variable that should be included in the result data for a particular Task define one variable. For all newly created items activate the option Use first active hit per class (applies to all classes).


	Define Hit-Conditions, that evaluate to true if the required conditions are fulfilled (see section 5.3.2. Order the Hit-conditions and add a default condition with the hit-syntax true as last condition. This will ensure that each class has one active hit (see section 5.3.3). For a usual workflow Miss-conditions are not needed, neither are Weights.


	Extract string information using the resultText()-operator, if necessary. While hits are as values of categorical variables, the Result-Text can be used to capture numerical or text responses.


	Assign hits to classes. Classes fulfill the function of variables in the scoring of CBA ItemBuilder projects. Besides the unique name of the class (variable name), a description of the class can be entered in the Class Comment (variable description).


	Decide how to handle missing response and implement, if necessary, additional Hit-Conditions for omitted responses and not reached questions (see section 5.3.11).


	Test the scoring implementation using the Scoring Debug Window. If the option Use first active hit per class (applies to all classes) was not activated, make sure that exactly one hit (or miss) is active for each class at any point in time (see 8.4.2).











	Note that Hit- and Miss-conditions can be ordered in the Task Editor of the CBA ItemBuilder.↩︎








  
  
  ch008.xhtml
  
  




6 Recipes and Examples



This chapter provides concrete recipes and examples for creating innovative assessments using the CBA ItemBuilder. The first section 6.1, starts with tips about regular expressions, mainly used for scoring purposes and to restrict the possible text input. The subsequent sections focus on resource files (i.e., images, audio, and video files; see section 6.2) and on the global properties (i.e., definitions that a shared within a CBA ItemBuilder project file; see section 6.3). Examples illustrating the use of Conditional Links and Finite-State Machines syntax for different purposes are described in section 6.4. Section 6.5 focuses on digital calculators and the implementation using either Finite-State Machines or ExternalPageFrames. More examples for the use of HTML5/JavaScript content with ExternalPageFrames are provided in section 6.6. Section 6.7 summarizes possible approaches to implementing adaptive assessments using the CBA ItemBuilder. Finally, section 6.8 focuses on efficiency and tricks to implement content using the CBA ItemBuilder with less effort, and section 6.9 refers to creating items in multiple languages.


6.1 Regular Expressions





For different purposes, the CBA ItemBuilder supports the use of so-called Regular Expressions. Regular expressions are sequences of characters (i.e., strings) that can be used to formulate patterns that match text with specific properties. The CBA ItemBuilder allows regular expressions to restrict the input to SingleLineInputFields and InputFields. If a regular expression is defined in components of this type as Input Validation Pattern, only text that matches the defined pattern can be entered. The CBA ItemBuilder also supports the use of regular expressions for the scoring of text responses and for conditional links. The syntax for defining patterns as regular expressions that can be used for restricting input as well as for matching responses is listed in the Appendix (10.3).1 In regular expressions used for scoring, conditional linking, or for definitions in any other syntax part of the CBA ItemBuilder, \ need to be escaped (i.e., replaced with \\). Some characters have special meaning in regular expressions and must be escaped. All escaped characters begin with the ’' character. Within a regular expression , only \, –, and ] need to be escaped.2



6.1.1 Valid UserDefinedIds as Regular Expression

 

To illustrate how regular expressions can be used to define patterns for valid text, we illustrate how the possible schema for UserDefinedIds (see section 3.7.4) can be translated into a regular expression:



Only strings matching this regular expression can be used as UserDefinedId: ([A-Za-z][A-Za-z_0-9]*)


According to the syntax of regular expressions (see table 10.3 in the appendix for details) this expression defines the following pattern:


	Only uppercase or lowercase characters are allowed as first characters: [A-Za-z]. This matches the requirement that a User-Defined Id must start with a character and must have a length greater or equal one.

	Digits and underscores are allowed after the first position in addition to uppercase and lowercase characters: [A-Za-z_0-9]*, but no umlauts / vowel mutations are allowed.

	The number of characters is not limited, and white spaces are not allowed.



This restriction of allowed characters also applies to name of Tasks (see 3.6.1), name of Finite-State Machine Variables (see section 4.2) and States (see section 4.4).



6.1.2 Scoring (Text) Responses with Regular Expressions



Regular expressions are often used to define hit or miss conditions when scoring CBA ItemBuilder tasks. The item shown in Figure 6.1 illustrates with a synthetic example the use of regular expressions for scoring text responses.


[image: Example item illustrating scoring wit regular expressions ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ScoringInputFieldExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ScoringInputFieldExample.zip)).]

FIGURE 6.1: Example item illustrating scoring wit regular expressions (html|ib).




Regular Expressions with Alternatives: The first hit (Variable1_Correct) defined in the example uses the syntax [D|d]og within a regular expression, which recognizes both upper and lower case forms of dog:

matches(txtVar1,"\\s?[d|D]og\\s?")




This syntax is supplemented by \\s?, i.e. an optional space before or after the searched words. As described above, the expression \s (see appendix 10.3) was thereby paraphrased as \\s.

Combination of matches()-operators: Alternatives can be formulated within regular expressions. However, it is often easier to combine several matches() operators in the scoring condition. The hit Variable1_Wrong is an example of this, where the already described case detection is combined with an operator that detects empty text fields:



(not matches(txtVar1,"\\s?[d|D]og\\s?") and not matches(txtVar1,""))




When combining matches() operators with and and or the rules for bracketing multiple operands must be observed (see section 4.1.3). The negation with not can additionally be added as part of the operands.




Empty Response: For encoding missing (text) responses, an empty string can be provided as argument for the matches()- operator to check whether a character was entered at all:

matches(userDefinedIDInputField,"")


This pattern was used in the item in Figure 6.1 for defining hits to identify missing responses. Because the CBA ItemBuilder’s implementation of the matches(userDefinedIDInputField,"") (i.e., the use of "" empty expressions) is also triggered in multiline TextFields as soon as one empty line is included, it may also be useful to check if no characters have been entered with the following regular expression:

not matches(userDefinedIDInputField,"^(?!\\s*$).+")`


Figure 6.2 illustrates the difference between empty expressions "" and the expression to match white spaces "^(?!\\s*$).+".


[image: Example item illustrating the different approaches to check empty input ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/MatchesMultiLineTest/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/MatchesMultiLineTest.zip)).]

FIGURE 6.2: Example item illustrating the different approaches to check empty input (html|ib).






Decimal Numbers (with . or ,): Another application of a selection via | can be used to accept both dot and comma as decimal separators ([.|]). In cultures where a thousands separator is not typically used, this can be useful when checking decimal numbers:

matches(txtVar2,"\\s?3[.|,]5\\s?")  


As shown in the second item in Figure 6.1, this can be used to check whether the correct answer (3,5 or 3.5) was entered in the SingleLineInputField with the UserDefinedId: txtVar2.



Numerical Ranges using Regular Expressions: By combining the components, it is also possible to check whether an entered decimal number is within a desired range:

((matches(txtVar3,"\\s?[2][.|,][5-9]\\s?") or
  matches(txtVar3,"\\s?[3-6][.|,][0-9]\\s?")) or
  matches(txtVar3,"\\s?[7][.|,][0-33]\\s?"))


Scoring conditions like this (see Hit Variable3_Correct) can also be negated and combined with a check for empty inputs (see Hit Variable3_Wrong).



6.1.3 Input Validation with Recuglar Expressions

 

Regular expressions are also commonly used when creating items with the CBA ItemBuilder to limit the possible inputs of text. A restriction of the possible characters that can be entered to text fields, such as SingleLineInputFields and InputFields, is a common requirement for the implementation of items with (short) text responses. To apply an input restriction using the CBA ItemBuilder, components that support this feature provide the property Input Validation Pattern in section Misc of the Properties-view.

To define an input validation, the component must be selected in the Page Editor. If necessary, the context menu can be used to open the Properties-view (entry Show Properties View). Regular expressions are entered in as Input Validation Pattern property (see Figure 6.3).

 


[image: Property `Input Validation Pattern` in the *Properties*-view.]

FIGURE 6.3: Property Input Validation Pattern in the Properties-view.




When using regular expressions to restrict text input, please note that the pattern must be valid not only for the final response but also for all intermediate steps in the input of the response.



The default value of the component must match the regular expression.


Since the input is made characterwise, the input 3., for example, must also be valid with respect to a particular pattern so that a decimal number 3.0 can be entered. This is not necessary for the identification of different free text responses with regular expressions (see 6.1.2).

The item shown in Figure 6.4 illustrates some of the regular expressions often used to restrict text entry for SingleLineInputFields.




[image: Item illustrating different `Input Validation Pattern` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/InputValidationInputFieldExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/InputValidationInputFieldExample.zip)).]

FIGURE 6.4: Item illustrating different Input Validation Pattern (html|ib).




Restricting the possible characters that can be entered into a SingleLineInputFields (or InputField) simplifies scoring for short text responses and also affects the design of tasks. The rejected characters are, however, included in the Log Events provided by components of type SingleLineInputField and InputField.In the following we provide commented and documented regular expressions for input validation that are used in the item shown in Figure 6.4.



Integer Numbers: Only the numbers 0 to 9 can be entered in an input field with the following Input Validation Pattern:

[0-9]*


Empty strings are allowed (because of the *).



Only Letters, Blanks and Digits: Only the numbers 0 to 9, small letters a to z and capital letters A to Z can be entered in an input field with the following Input Validation Pattern:

[a-zA-Z0-9]*


Only Single Letters: Only one single letter A-Z, or an empty sctring is allowed when using the following Input Validation Pattern:

[A-Z]{0,1}?


All Characters, Except Digits: With the help of the following Input Valiation Pattern it can be achieved that all characters except digits can be entered:

[^0-9]*




Decimal Number (with .): The input of decimal numbers is possible with this Input Validation Pattern, where both only . as decimal separator is allowed.

([0-9](\.[0-9]?)?)?


The expression allows one digit left to the digital delimiter (\.). The digital delimiter and one additional digit is optional. Empty strings are allowed.

Length Restricted Decimal Number (max 3 digits, with . or ,): If inputs are to be limited in length, this can also be implemented with regular expressions:

((\d{1,3})([.|,](\d{0,2}))?)?


In this example, only digits ‘(\d]{1,3})’, one to three characters, are accepted before the decimal delimiter. A dot or comma are allowed as decimal delimiters ([,|.]). Up to three digits can be entered right to the decimal delimiter ((\d{0,2})). The second group “()?” is optional ([.|,](\d{0,2}))? and empty strings are allowed.



Feedback using Input Validation Events: If an Input Validation Pattern applies to the current input into a SingleLineInputField or a InputField, an FSM Event can be triggered. The following example in Figure 6.5 illustrates the use of Input Validation Events, Raised In Events and Raised Out Events to inform test-takers about allowed characters and ignored inputs.


[image: Item illustrating the use of `Input Validation Events` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/InputValidationEventExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/InputValidationEventExample.zip)).]

FIGURE 6.5: Item illustrating the use of Input Validation Events (html|ib).




Regular Expressions are one of the standard approaches to search for patterns in text strings. In the CBA ItemBuilder, regular expressions are used at Runtime for scoring text responses and for restricting input. The examples described in this section can only illustrate how regular expressions can be used. Concrete requirements can lead to more complex regular expressions, which can also be used to prevent the entry of sensitive information such as telephone numbers, for example. The regular expressions used must be tested in a systematic test strategy (see, for instance, 8.4.2) to collect reliable empirical data.




6.2 Ressources Files



Multimedia resources (images, videos, and audio files) are of great value in contextualizing interactive assessment, creating simulations and small experiments, and designing static and interactive content.


6.2.1 Preparing Image Files

Section 3.10.1 describes supported file formats. As it supports lossless compression, the PNG format (Portable Network Graphics) is often a good choice when preparing image files for designing items with the CBA ItemBuilder.

Some open source tools that might be helpful include:


	Simple image editor, e.g., paint.net

	More complex application, e.g., gimp



For CBA ItemBuilder versions prior to Version 10.0, images where suggested to display text with non-web-safe fonts.3 In particular for online deployment (see section 7.2.1), image size can make a difference. If possible, images should be reduced to the required size, and stored as efficiently as possible (for instance, using vector quantization algorithms for PNG images, as provided by pngquant).

How to use transparent images? As shown in Table 3.9, transparency is also supported by the PNG format. To use images in the PNG format with transparent background, the property Is Transparent of the component that will be used within the CBA ItemBuilder to show the image, must be set to true (see Figure 6.6).


[image: Example item illustrating transparent images in the *PNG*-format ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TransparentImageExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TransparentImageExample.zip)).]

FIGURE 6.6: Example item illustrating transparent images in the PNG-format (html|ib).




How to create multiple layers? The example shown in Figure 6.7 illustrates that components of type ImageField can be arranged in different Z-order (see section 2.11.4 and also section 3.7.5 for an example).


[image: Example item illustrating `ImageFields` with alpha transparency and different *Z-Order* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/AlphaImageExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/AlphaImageExample.zip)).]

FIGURE 6.7: Example item illustrating ImageFields with alpha transparency and different Z-Order (html|ib).




Advanced scenarios combining and overlaying several images with semi-transparency currently need to be prepared outside the CBA ItemBuilder. To implement semi-transparency, please merge the images in a graphics tool and, if necessary, cut them into several pieces. The components described in section 3.10.2 can be used to design items with multiple images.

How to find the original size of an image in pixel? The size of images in pixels is relevant for the design of computer-based items (not only with the CBA ItemBuilder). If the images are too small, i.e., smaller than the size in which they are displayed, then a blurred impression results from the extrapolation during enlargement. If the images are too large, they must first be loaded entirely in the browser before they can then be reduced to the actual size for display. This consumes bandwidth unnecessarily.

To learn about the size of an image file, right-click the file in either Explorer or Finder, and select Get Info (Mac) or Properties (Windows) to see the physical size of images (in pixels). On Windows, a click either on Details or Summary can be required to access the information (the tab name will depend on the specific operating system).

To support the display in the size that matches the file size, the CBA ItemBuilder will automatically resize the component (e.g., ImageFiled) to the size of the image after linking the image to the component.

Why to resize images before adding them to the CBA ItemBuilder? It is recommended to reduce images for use in the CBA ItemBuilder to the size with which the images should actually be used. This does not only reduce the file size and thus potentially the loading time in online deliveries, it also allows a better control over the result of the scaling, as shown in Figure 6.8.


[image: Example showing images resized to different sizes ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ImageResizeBrowserExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ImageResizeBrowserExample.zip)).]

FIGURE 6.8: Example showing images resized to different sizes (html|ib).




Always use Proportional Scaling: If image files are resized in the CBA ItemBuilder, please make sure that the aspect ratio does not change (proportional scaling). The easiest way to do this is to resize the image display component using the grid points at the corners (and not to use the grid points in the middle between the corners).



It is recommended to always insert images into CBA ItemBuilder project files in the size in which they will be displayed (to save disk space and bandwidth). For a professional look, images must never be compressed or stretched, i.e., the aspect ratio (or preferably the width and height in pixels) of an image file must be identical to the aspect ratio (or preferably the width and height in pixels) of the component displaying the images.




6.2.2 Preparing Audio and Video Files

Audio and video files can be used in CBA ItemBuilder Tasks as part of the instruction, as a stimulus (for example, for listening comprehension tasks), or for test accommodation (i.e., reading aloud test accommodation). In the current version, CBA ItemBuilder supports libraries for generating conversion from Text to Speech only via ExternalPageFrames. The default way is to create audio files and videos (analogous to images) before using them in the CBA ItemBuilder and import media resources via the Resource Browser (see section 3.10.1).4 Some open-source tools that might be helpful include:


	Tools for audio editing and converting, e.g., audacity

	Tools for video converting (e.g., ffmpeg, VLC player)

	Tools for video capturing (e.g., OpenShot or OBS)



How to convert audio and video files formats? Various tools, such as the VLC player, exist that support converting file formats. The CBA ItemBuilder supports the file formats listed in section 3.10.1 for audio and video files. For video resources, not only the file format but also the codec used must be taken into account. Whether an audio or video file in a particular format can be used for test delivery depends not only on the CBA ItemBuilder. The browser or web browser component used to display the item content must support the format used. Therefore, it is recommended to keep the sources, especially for self-created audio and video files, and to test the usability in the concrete setting before converting and integrating many files.

How to change the volume of the audio files? The volume of audio and video is fixed within the files and can, within certain limits, be increased or decreased as part of the pre-processing. For audio files, this can be done, for instance, with audacity. The VLC player and other tools support this functionality for video files.

How test-taker can change the volume? The volume of audio resources within the file is one of many factors determining how loud audio files are played during Runtime. The components used for embedding Audio and Video resources can also change the audio output volume (see section 3.10.3 for details), either using the visible Controls or using a Finite-State Machine operator.




6.3 Global Properties



Each CBA ItemBuilder project file has global settings that are used for all tasks (and thus for all pages) of the project.



If the settings of components cannot be changed or defined via the Properties-view, then they can be adjusted in the Global Properties.


 


6.3.1 Project Settings

As described in section 3.2.2, the context menu that is available using right-click on the project name in the Project View gives access to the Project Settings using the entry Global Properties.



Presentation height/width: The display size of an assessment component is set in pixels for a currently opened project file in the Global Properties (see section 3.2.2 and also section 3.6.2). Content created with the CBA ItemBuilder can be displayed in different ways (see section 7.2.1), including the use of Proportional Scaling (see section 2.4).



 

Link Color / Visited Link Color: General settings for the link color and the color of visited links can be set for the entire project in the Global Properties. These settings are used for components of type Link (see section 3.11.1) and also for components of type Button (see section 3.11.2).

Highlight Color: For the response format Highlighting (see section 3.8.3) the default color can be defined.

Context Menu Settings: By default, the context menu is disabled at runtime for CBA ItemBuilder web-based deliveries (i.e., Show browser context menu is not selected). However, under specific conditions, a context menu that gives access to Copy, Cut, and Paste can be helpful, activated using the option Show edit context menu.

Page Size Warnings: Before executing a preview, the CBA ItemBuilder checks if all pages stay within the size defined as CBA Presentation Size (see section 3.2.2 and also section 3.6.2). If scrollable areas are to be created, e.g. with the help of components of the type PageArea (see section 3.5.4), the warning message (shown in Figure 3.51) can be ignored or deactivated via the setting in the Global Properties.

Trace Variable Changes: Log entries for changes to variable values (see section 4.2) can be created automatically if the Trace Variable Changes option is enabled.

Deprecated Features / Features under Development: The tab Project Settings contains additional options that are kept for compatibility reasons, are currently not used or not documented so far. The options Deactivate Firefox context menu, Ctrl+F - Page, and Right-To-Left Orientation and XLIFF Support are not available, tested or supported in the current version of the CBA ItemBuilder. The Default Language / Extension should match the language of the test, but the setting is not yet used at many places.



6.3.2 Translations and Icons

The tab Translations (see Figure 6.9) can be used to provide translated texts for various English default texts that can be of relevant at runtime. Default icons that are used in different components can be linked to embedded resource files in a CBA ItemBuilder project file in the tab Icons. Note that the files must be added using the Resource Browser (see section 3.10.1) before the icons can be assigned.


[image: Tabs *Translation* and *Icons* in the *Global Properties* of CBA ItemBuilder *Project Files*.]

FIGURE 6.9: Tabs Translation and Icons in the Global Properties of CBA ItemBuilder Project Files.






6.3.3 CSS Styles

If items are to be designed according to precise specifications, selected properties can be missing in the CBA ItemBuilder. For example, in the current CBA ItemBuilder, the text color for disabled buttons cannot be defined via the Properties View. For such (rather extraordinary) use cases and refinements, CSS classes can be used for HTML5 generation. CSS styles are defined by entering valid CSS syntax into the text field in the tab CSS Styles of the Global Properties. CSS classes can be assigned by entering the class name into the field CSS Class Name in the Properties-view of components (see Figure 6.10 for an example).

In this example, the following CSS definition is used to define the text color of buttons when they are de-activated (frozen):

.mycssdemo:disabled {
    color: rgb(205 213 225)!important;
}



[image: Example item illustrating the use of CSS Styles ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/CSSClassNameExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/CSSClassNameExample.zip)).]

FIGURE 6.10: Example item illustrating the use of CSS Styles (html|ib).




Please note that the use of CSS styles should be the exception since these CSS styles may not be adopted in case of a possible change of the delivery technology and that the CBA ItemBuilder does not check the validity of the CSS styles.



User-defined CSS styles can be a potent tool for customizing the appearance and behavior of items, which is, however, specific to the HTML output format of the CBA ItemBuilder used in the current versions. Please use this option with the necessary technical caution.




6.3.4 Metadata (about Content)

The CBA ItemBuilder provides an interface to define metadata for each project file (see Figure 6.11), that can be edited in the Global Properties (right-click the project name in the Project View), in the tab Meta-Data.


[image: Tab *Meta-Data* in the *Global Properties* of CBA ItemBuilder *Project Files*.]

FIGURE 6.11: Tab Meta-Data in the Global Properties of CBA ItemBuilder Project Files.






The CBA ItemBuilder is a tool for creating and sharing assessment content. In the metadata, the information with which item authors want to enable the sharing of items can be stored in each project file.


The entries are stored as key-value pairs, providing the following Dublin Core keys as default (definitions copied from the Dublin core specification):


	Title: A name given to the resource (i.e., the CBA ItemBuilder project file including one or multiple Tasks). Within a collection of CBA ItemBuilder items belonging to an instrument, test, or item pool, the usage should be consistent, e.g., the unit name, the item name, or even for several CBA ItemBuilder projects, the test name. If the identical title is used for multiple CBA ItemBuilder project files, the concrete items can be distinguished by the identifier.


	Description: A text-based account of the resource, describing, for instance, the measurement goals, the required competences, skills or sub-skills, etc.


	Subject: The topic of the items or material combined into a CBA ItemBuilder project file. If possible, a controlled vocabulary should be used.


	Date: A point or period of time associated with an event in the lifecycle of the CBA ItemBuilder project file (i.e., the year in which a particular assessment used the item or similar).


	Language: A language of the resource (i.e., the CBA ItemBuilder project file). Recommended general best practice is to use a controlled vocabulary such as RFC 4646 (Phillips and Davis 2009)


	Format: The file format of the resource. For the CBA ItemBuilder it is suggested to include the URI of the CBA ItemBuilder and the version information (e.g., created with CBA ItemBuilder 9.8, https://www.itembuilder.de)


	Type: The nature or genre of the resource. For assessment content, the type could refer to the item type (e.g., multiple-choice task), the function of the component within the assessment (e.g., instruction, tutorial, cover page, etc.), or the assessment type (e.g., summative or formative assessment).


	Identifier: An unambiguous reference to the resource within a given context. For assessments this could be an Item-ID, or any other ID that is used to describe the assessment content stored in this CBA ItemBuilder project file.


	Coverage: The spatial or temporal topic of the resource, the spatial applicability of the resource, or the jurisdiction under which the resource is relevant.


	Source: A related resource from which the described resource is derived. The described resource may be derived from the related resource in whole or in part. Recommended best practice is to identify the related resource by means of a string conforming to a formal identification system.


	Relation: A related resource. Recommended best practice is to identify the related resource by means of a string conforming to a formal identification system.


	Rights: Information about rights held in and over the resource. Typically, rights information includes a statement about various property rights associated with the resource, including intellectual property rights.


	Creator: A person, an organization or a service primarily responsible for making the resources.


	Contributor: A person, an organization or a service that is responsible for making contributions to the resources.


	Publisher: An entity responsible for making the resource available. Examples of a Publisher include a person, an organization, or a service. Typically, the name of a Publisher should be used to indicate the entity.




Additional Meta-Data as key-value pairs can be defined by using the button Add key and defining the values of the user-defined keys.




6.4 FSM and Conditional Link Syntax Examples




6.4.1 Create Animated Instructions

In order to achieve a higher degree of standardization of assessments, e.g. if it is not ensured that all target persons can or want to read fluently, instructions are often read aloud. For this requirement the CBA ItemBuilder allows the use of components for the playback of audio files or videos (see section 3.10.3). The following example in Figure 6.12 illustrates how mp3 files are played back one after. The playback for each audio file one.mp3, two.mp3 and three.mp3 is started in a transition between two states and the transitions are triggered by either the button (one.mp3) or the audio Stop Event (see subsection 4.4.3) linked to the Audio component used to playback the preceding audio file.


[image: Example for sequence of audio files with multiple states ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SequenceOfInstructionStepsExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/SequenceOfInstructionStepsExample.zip)).]

FIGURE 6.12: Example for sequence of audio files with multiple states (html|ib).




Multiple events (see subsection 4.4.3) are used to create the example shown in Figure 6.12:

Events: EV_AudioOneFinished, EV_AudioTwoFinished,   /* Audio Stop Events */
        EV_AudioThreeFinished
        EV_Start, EV_Reset;                         /* Start and Reset */


The three audio stop events are used to trigger the transitions between the states One, Two and Three, the two additional events EV_Start and EV_Reset are used to start the instruction and to reset the illustration. Note that in real assessments the instruction would like be implemented to start automatically (using, for instance, the property Automatic Start of the first Audio component, see section 3.10.3 for details).

The remaining finite-state machine rules (simplified) are shown in the following listing:

// First transition starts automatically 
Rules: Start -> NotStarted {true|setFrozen(B_Next)} 

// Triggered by button 'Start'
NotStarted => One {EV_Start|setMediaPlayer(A_One, mp_start), 
                            setFrozen(B_Start)}

// Triggered by the audio end event of audio one, two, or three:
One => Two{EV_AudioOneFinished|setMediaPlayer(A_Two, mp_start)} 
Two => Three{EV_AudioTwoFinished|setMediaPlayer(A_Three, mp_start)}  
Three => InstructionFinished{EV_AudioThreeFinished|unsetFrozen(B_Next)}  

 // Reset (the illustration) triggered by button `Reset`
InstructionFinished => NotStarted{EV_Reset|setFrozen(B_Next),
                                           unsetFrozen(B_Start)}




6.4.2 Adaptivity Within Tasks using Conditional Links

Adaptive testing based on item response theory requires a scaled item pool. If assessments are not performed with the goal of IRT-based ability estimation using already known item parameters, skip rules using conditional links can also be used to implement explicitly specified branching.

The item in Figure 6.13 shows an example where tasks are presented following a predefined branching tree (see Figure 6.14) depending on the solution of previous tasks.


[image: Item illustrating *with-task* adaptivity using *Conditional Links* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ConditionalLinkingAdaptivityExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ConditionalLinkingAdaptivityExample.zip)).]

FIGURE 6.13: Item illustrating with-task adaptivity using Conditional Links (html|ib).




In this hypothetical example, the assessment is done separately in two sections. In a first learning phase, additional pages are displayed after each incorrect answer, which could contain explanations or motivational feedback, for example. These additional pages are not displayed if a task has already been solved correctly. In the second measurement phase, no feedback provided, but the difficulty of the administered task take still previous responses into account.


[image: Adaptivity in the *with-task* adaptivity example shown in Figure 6.13.]

FIGURE 6.14: Adaptivity in the with-task adaptivity example shown in Figure 6.13.




The following tasks are used in the example, adminsitrated according to the logic shown in Figure 6.14:


	Question 1: What fraction of the square is blue?  (A: 43\frac{4}{3}, B: 58\frac{5}{8}, C: 38\frac{3}{8}, D: 73\frac{7}{3}, E*: 12\frac{1}{2})


	Instruction 1: Some useful hint how to count the number of highlighted areas in a figure, using the plot of Question 1 as an example.


	Question 2: What fraction of the square is red?  (A: 12\frac{1}{2}, B: 23\frac{2}{3}, C: 49\frac{4}{9}, D*: 59\frac{5}{9}, E: 15\frac{1}{5})


	Instruction 2: Some useful hint how to count the number of highlighted areas in a figure, using the plot of Question 2 as an example.


	Question 3: What is the denominator of the fraction 1225\frac{12}{25} (Short text: 2525)


	Question 4: What is the numerator of the fraction 78\frac{7}{8} (Short text: 77)


	Instruction 3: Some useful hint how the two components of a fraction are labeled (i.e., Fraction=NumeratorDenominator\text{Fraction}=\frac{\text{Numerator}}{\text{Denominator}}).


	Question 5: Express 3÷53\div 5 as a fraction (A: 53\frac{5}{3}, B*: 35\frac{3}{5}, C: 1515)


	Question 6: What fraction of one kilogram are 3 grams? (A: 310\frac{3}{10}, B: 3100\frac{3}{100}, C*: 31000\frac{3}{1000}, D: 310000\frac{3}{10000},E: 33)


	Question 7: How do we write two-thirds? (A: 32\frac{3}{2}, B*: 23\frac{2}{3}, C: 13\frac{1}{3}, D: 12\frac{1}{2})


	Question 8: What fraction are 2 months of one year? (A: 22, B: 112\frac{1}{12}, C*: 16\frac{1}{6}, D: 210\frac{2}{10}, E: 12\frac{1}{2})


	Question 9: What is the number that makes these fractions equal? 2?=412\frac{2}{?}=\frac{4}{12} (A: 44, B*: 66, C: 88, D: 33, E: 1010)




In this example, forcing answers has been omitted and missing answers are treated as incorrect.



6.4.3 Hiding/Showing Components on Pages

The operator setHidden(UserDefinedID) can be used to hide the components with the UserDefinedId. Similarly, the unsetHidden(UserDefinedId) operator can be used to make a hidden component visible again. As can be seen in Figure 6.15, this can be used, for example, in Conditional Links to show or hide several components at the same time. The combination of several components is done by several setHidden() or unsetHidden() operators.


[image: Example item illustrating the use of `setHidden()` / `unsetHidden()`-operators in *Conditional Links* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/EliminateWrongChoicesExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/EliminateWrongChoicesExample.zip)).]

FIGURE 6.15: Example item illustrating the use of setHidden() / unsetHidden()-operators in Conditional Links (html|ib).




For hiding or un-hiding images, as an alternative to the setHidden() / unsetHidden() operators, a Value Map and a component of type MapBasedVariableDisplay can be used (see section 4.2). For this purpose, an empty or transparent image, for example, is assigned to a value in the Value Map.



6.4.4 Approaches to Show Additional Content

Figure 6.16 illustrates different options to show additional information on request of test-takers. Example 1 displays additional information using a page configured as Dialog Page, linked to a button. The Dialog Page is configured as Closable: false and positioned using the X and Y coordinate of the Frame. The information is hided using a button defined with the command CLOSE that is placed on the Dialog Page. Example 2 uses a MapBasedVariableDisplay to show either a question mark or a text depending on the value of a variable, and the value of the variable is changed using the Finite-State Machine and an event assigned to the MapBasedVariableDisplay.


[image: Example item illustrating the different ways to show additional information ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ShowAdditionalInformationExamples/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ShowAdditionalInformationExamples.zip)).]

FIGURE 6.16: Example item illustrating the different ways to show additional information (html|ib).




Example 3 also uses events. The page shown in a PageArea is changed when the test-taker clicks into the SingleLineInputField using an event linked as Raised In Event and an empty page is shown in the PageArea when the Raised Out Event is triggered. Example 4 makes additional information visible using the unsetHidden()-operator, linked to the Raised Events of RadioButtons.



6.4.5 Implement Time Limits for Tasks

Limiting the available time for test parts in which test-takers may be able to navigate freely can be provided by the test delivery software. However, time limits are also doable within assessment components. In multi-page CBA ItemBuilder projects, time limits can be implemented with timed FSM events (see section 4.4.3). Figure 6.17 illustrates how a time limit can be implemented for multiple tasks. The example also uses PageAreas (see section 3.5.4) to implement a permanently visible outer page in which the time-limited tasks on sub-pages are embedded.


[image: Example item illustrating a time limit for multiple tasks ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TimeLimitExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/TimeLimitExample.zip)).]

FIGURE 6.17: Example item illustrating a time limit for multiple tasks (html|ib).




To understand the example in Figure 6.17, it is crucial to see that the timed event EV_Timelimit only results in a timeout within the ST_Started state:

Events: EV_Start,                  // Start time restricted section 
        EV_Timelimit 10,               // Timed event (10 seconds) 
        EV_Task1, EV_Task2, EV_Task3;  // Events for navigation
        
Rules: ST_Start->ST_NotStarted{true}

ST_NotStarted => ST_Started{EV_Start|setEmbeddedPage(PA,task1)}

ST_Started internal {EV_Task1|setEmbeddedPage(PA,task1)}    
                    {EV_Task2|setEmbeddedPage(PA,task2)}
                    {EV_Task3|setEmbeddedPage(PA,task3)} 

ST_Started => ST_Timeout{EV_Timelimit|setEmbeddedPage(PA,timeout)}

ST_Timeout => ST_NotStarted {EV_Start|setEmbeddedPage(PA,instruction)}


This desired behavior is achieved by defining a rule for the event EV_Timelimit only in the FSM state ST_Started.



6.4.6 Navigation Restriction

An essential goal for implementing computer-based assessments (especially for technology-enhanced items) is minimizing construct-irrelevant factors. Therefore, all possibilities for interaction with the item material must be examined and selected to determine whether they are necessary for authentic task presentation or more of a hindrance and distraction. The result of this consideration can be to enable certain functionalities only under clearly defined conditions. A typical example is the restriction of free navigation through task material or the time restriction of the availability of options. A small selection of possibilities, namely different options to restrict the navigation (i.e., the use of a button Next), are illustrated in Figure 6.18.


[image: Example item illustrating the different navigation restrictions ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/NavigationRestrictionExamples/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/NavigationRestrictionExamples.zip)).]

FIGURE 6.18: Example item illustrating the different navigation restrictions (html|ib).






6.4.7 Video with Built In Questions

Inspired by the Interactive Video format from H5P, the following example shows how a video can be used split into multiple parts to combine the presentation of multimedia content and opportunities for interaction. Figure 6.19 illustrates how segments of a video can be shown, interrupted with questions.


[image: Example item illustrating an interrupted video with embedded questions ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VideoWwithBuiltInQuestions/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/VideoWwithBuiltInQuestions.zip)).]

FIGURE 6.19: Example item illustrating an interrupted video with embedded questions (html|ib).






6.4.8 Click-Sensitive Labels

For RadioButtons (and Checkboxes) the label texts should be click-sensitive. That means, a click on the text next to a radio button or checkbox should select the corresponding element. This ensures that RadioButtons and Checkboxes are not only activated when the test-taker hits exactly the (small) control. As shown in the following example (A), this is the default behavior if the label text (i.e., the distractor text) is defined using the text property of the RadioButton (or Checkbox). If the text property is not used, a click on the additional component (for instance, an HTMLTextField or a SingleLineInputField with Readonly=true showing the distractor text) is not linked to the RadioButton (or Checkbox, see B). In this case, it is suggested to use the advanced features of the CBA ItemBuilder to make the components used to show the distractor text click-sensitive. This goal can be achieved with the CBA ItemBuilder using syntax operators either as part of Conditional Links (see section 4.3) or in transitions of a Finite-State Machine (see section 4.4).

Solution Using Conditional Links: A first and simple solution based on Conditional Links is shown in Figure 6.20. The example item illustrates the expected behavior (A) if the text property of RadioButtons is used. The item also shows the problem of labels that are not click-sensitive (B). To use of Conditional Links as additional click-sensitive labels for RadioButtons (C) the labels were designed using SingleLineInputFields with the property Readonly=true:


[image: Example for using operators in *Conditional Links* to align `SingleLineInputFields` and `RadioButtons` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ComponentsAsLabelsForRadioButtonsConditionalLinksExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ComponentsAsLabelsForRadioButtonsConditionalLinksExample.zip)).]

FIGURE 6.20: Example for using operators in Conditional Links to align SingleLineInputFields and RadioButtons (html|ib).




[Issue 3]
As can be seen, when clicking on the text label for the different distractors for option C, each click on the text automatically activates the corresponding RadioButton. This behavior is implemented by assigning Conditional Links to each SingleLineInputField, as shown in the following example:

{page : true | setActive(rb1)}


The target page of the Conditional Link is the current Simple Page (with the name page). The Boolean value true is defined as the condition, meaning that this particular condition will always be executed. Next to the pipe symbol, the operator setActiv(UserDefinedID) (see Appendix 10.2 for details) is used to set the RadioButton with the User-Defined-ID rb1 active (i.e., selecting the RadioButton and thereby, as the default behavior of components of type RadioButton de-selecting all other RadioButtons in this particular RadioButtonGroup).

Solution Using Finite-State Machine: A second more general solution uses the Finite-State Machine to align the RadioButton selection and clicks on the components used as labels.5 The example looks identical to Figure 6.20, but components of type HTMLTextField are used as labels. The reason is, that HTMLTextFields allow to assign FSM Events (see section 4.4.3).6 To implement option C with a Finite-State Machine, one FSM Event must be defined for each response option (i.e., for each RadioButton). These events can then be used in a particular state, to activate the RadioButton (or Checkbox) using the setActive-operator (see Appendix 10.2 for details), for instance, in an internal transition as shown in the following FSM syntax:

Events: EV_RB1, EV_RB2, EV_RB3, EV_RB4;     // One event for each RadioButton, 
                                            // triggered by the HTMLTextFields   
Rules: Start -> Running {true}
Running internal {EV_RB1 | setActive(rb1)}  // The setActive-operator is used  
     {EV_RB2 | setActive(rb2)}                // to change the selected RadioButton, 
     {EV_RB3 | setActive(rb3)}                // when the event that is linked to 
     {EV_RB4 | setActive(rb4)}                // the HTMLTextField's is triggered.


Both approaches also work to create click-sensitive labels for other components such as Checkbox (see section 3.9.3). The choice between the two options is mostly a matter of taste. However, some components can only be linked with Conditional Links and other components only allow linking with FSM Events.



6.4.9 Contextualized Multiple-Choice Items

Figure 6.21 shows how components of type ImageValueDisplays and the Finite-State Machine can be used to contextualize a multiple choice answer format. In the example, the shown items shall be striked through.


[image: Example for contextualized multiple-choice with images ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/StrikeThroughMC/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/StrikeThroughMC.zip)).]

FIGURE 6.21: Example for contextualized multiple-choice with images (html|ib).




The visual design of the response format is created with ImageValueDisplays so that for each single choice an ImageValueDisplay shows either the selected or the un-selected option. Each ImageValueDisplays triggers one of the events EV_Item01, EV_Item02, EV_Item03, or EV_Item04 and the following FSM is used to change the values of the variables:

Events: EV_Item01, EV_Item02, EV_Item03, EV_Item04;  // Events for the options

Rules: Start -> Running {true|set(V_Item01,1),  // Initiallize the value of     
                      set(V_Item02,1),          // variables, used to store the 
                      set(V_Item03,1),          // selected state for each option 
                      set(V_Item04,1)}          // (1:=deselected, 2:=selected)
Running internal                                      
   {EV_Item01 : [V_Item01 == 1] | set(V_Item01,2)}   // Conditional internal 
   {EV_Item01 : [V_Item01 == 2] | set(V_Item01,1)}   // rules for switching  
   {EV_Item02 : [V_Item02 == 1] | set(V_Item02,2)}   // between selected and 
   {EV_Item02 : [V_Item02 == 2] | set(V_Item02,1)}   // deselected state for 
   {EV_Item03 : [V_Item03 == 1] | set(V_Item03,2)}   // each option. 
   {EV_Item03 : [V_Item03 == 2] | set(V_Item03,1)}
   {EV_Item04 : [V_Item04 == 1] | set(V_Item04,2)}
   {EV_Item04 : [V_Item04 == 2] | set(V_Item04,1)}


Use of the responses given by clicks on components of type ImageValueDisplays (stored internally in the variables V_Item01, V_Item02, etc.) for scoring the task is possible using the variable_in()-operator (see section 5.3.5).



6.4.10 Shuffle Response Options using ValueMaps

The CBA ItemBuilder does not explicitly support the representation of answer alternatives in random order (shuffling). However, the functionality can be implemented using MapBasedVariableDisplays and ValueMaps as shown in Figure 6.22.


[image: Example for shuffle response options with `ValueMaps` ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ShuffleResponseOptionsExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ShuffleResponseOptionsExample.zip)).]

FIGURE 6.22: Example for shuffle response options with ValueMaps (html|ib).




In addition to MapBasedVariableDisplays, the example uses an invisible component of type ExternalPageFrame to generate the random numbers in JavaScript. The random numbers are requested from the Finite-State Machine with the callExternalPageFrame()-operator (see section 4.6.4), calling a JavaScript code to set the variable values. Since the ExternalPageFrame is not yet loaded at the time of loading the item, initializing the variable values is triggered by calling the FSM event EV_Shuffle from the ExternalPageFrame as soon as it is loaded and ready.




6.5 Calculators Examples



The CBA ItemBuilder offers two different approaches to integrate a calculator into items. Digitalized calculators provide some advantages, e.g., the calculator can be enabled or disabled according to item-specific needs. Simple pocket calculators can be designed using visual components of the CBA ItemBuilder and directly integrated into items with the finite-state machine without any further programming knowledge. More specific and possibly more complex calculators can be integrated into CBA ItemBuilder projects via ExternalPageFrames.


6.5.1 Basic Calculator using Finite-State Machine



The following item in Figure 6.23 shows a basic calculator using the internal Finite-State Machine:


[image: Example for a calculator based on 'Finite-State Machine'.]

FIGURE 6.23: Example for a calculator based on ‘Finite-State Machine’.




To implement the calculator using the CBA ItemBuilder Page Editor, components of type Button (see section 3.11.2) and a component of type SimpleTextField (see section 3.8.1) are placed on a page. The Input Source property of the SimpleTextField type component must be assigned to the CALCULATION_ENGINE_RESULT value. All components that have this Input Source are used by the CBA ItemBuilder to display the output of the calculations that are calculated by the calculator engine of the finite-state machine. If the property Input Source Catch Focus for this SimpleTextField is set to true, the keyboard input is automatically collected by the SimpleTextField and the calculator can be used using the keyboard. An optional second SimpleTextField can be used to show the calculator engine’s stack (using the value CALCULATION_ENGINE_OP_STACK for the property Input Source).

The buttons must be assigned to Events so that in Finite-State Machine Rules the input can be passed to the calculator engine.7 An example FSM is shown below:

Events:  /* One event is defined for each button: */
  calc0, calc1, calc2, calc3, calc4, calc5, calc6, calc7,calc8, calc9,
  calcPI, calcDecimal, calcMult, calcDiv, calcAdd, calcSub, calcRes, 
  calcC, calcAC;

Rules:  /* Calculator settings are defined in very first transition */
  Start -> Process{true | calcSettings(displayWidth => 12, scale => 24)}
  /* Calculator operators are processed as internal rules  */
  Process internal { calc0  | calcOpnd(add, 0) }
  Process internal { calc1  | calcOpnd(add, 1) }
  Process internal { calc2  | calcOpnd(add, 2) }
  Process internal { calc3  | calcOpnd(add, 3) }
  Process internal { calc4  | calcOpnd(add, 4) }
  Process internal { calc5  | calcOpnd(add, 5) }
  Process internal { calc6  | calcOpnd(add, 6) }
  Process internal { calc7  | calcOpnd(add, 7) }
  Process internal { calc8  | calcOpnd(add, 8) }
  Process internal { calc9  | calcOpnd(add, 9) }
  Process internal { calcPI     | calcOp(clear), calcOpnd(add, 3), 
      calcOpnd(decimal), calcOpnd(add, 1), 
      calcOpnd(add, 4), calcOpnd(add, 1),     
      calcOpnd(add, 5) }
  Process internal { calcDecimal    | calcOpnd(decimal) }
  Process internal { calcMult   | calcOp(multiply) }
  Process internal { calcDiv    | calcOp(divide) }
  Process internal { calcAdd    | calcOp(add) }
  Process internal { calcSub    | calcOp(subtract) }
  Process internal { calcRes    | calcOp(equals) }
  Process internal { calcC  | calcOp(clear) }
  Process internal { calcAC | calcOp(clearall) }


The actual processing of test taker input is done by the special operators for the calculator engine (see section 4.4.6). The user interfaces created as part of the CBA ItemBuilder Project File’s content can be customized and adapted by item authors to the needs of items and tasks by placing, adding, and omitting buttons.



6.5.2 Embedding Calculator using ExternalPageFrame



An example for an external calculator that can be embedded using the ExternalPageFrames (see section 3.14) is shown in Figure 6.24.8


[image: Example for `ExternalPageFrame` with calculator. ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ExternalPageFrameWithCalculatorExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/ExternalPageFrameWithCalculatorExample.zip)).]

FIGURE 6.24: Example for ExternalPageFrame with calculator. (html|ib).




Note that if logging of calculator actions is required, it can be implemented in JavaScript using the API for trace events (see section 4.6.2).




6.6 ExternalPageFrame Examples



The functionality of the CBA ItemBuilder does not limit the possibilities for designing Technology-Enhanced Items. Instead, the CBA ItemBuilder can be understood as a platform where recurring elements are made available as components for item authors while new and innovative components provided by software developers can be integrated using the ExternalPageFrames (see section 4.6.2). In this section, some examples are shown to illustrate the possibilities. However, it is by no means a complete overview.


6.6.1 Continous Sound using Buttons in ExternalPageFrame

The CBA ItemBuilder can play audio files. But it may not be able to repeat audio files continuously, as is necessary for playing notes on a (digital) instrument. Just because such a function is missing, the use of the CBA ItemBuidler does not have to be completely questioned. With the help of JavaScript and ExternalPageFrames extensions can be easily programmed. Figure 6.25 illustrates how such a missing functionality can be added using ExternalPageFrames.

(ref:ExternalPageFrameButtonExample) Continous Audio Play with ExternalPageFrames (html|ib).


[image: (ref:ExternalPageFrameButtonExample)]

FIGURE 6.25: (ref:ExternalPageFrameButtonExample)




In this project file, each of the three buttons is implemented separate ExternalPageFrame to keep the syntax as minimal as possible. The respective HTML files contain JavaScript code to play a wav file and a standard HTML button.



6.6.2 Alternative Editors as ExternalPageFrame

The CBA ItemBuilder does not natively support the input of mathematical formulas. The following example in Figure 6.26 illustrates the use of the mathlive library. Mathlive provides a virtual keyboard that also allows formula input on touch devices. The library can be included and used via an ExternalPageFrame component.

(ref:MathLiveExternalPageFrameExample) Using math-field (from Mathlive) within ExternalPageFrames (html|ib).


[image: (ref:MathLiveExternalPageFrameExample)]

FIGURE 6.26: (ref:MathLiveExternalPageFrameExample)




In the same way as a specific editor for mathematical input, a text editor can also be included as an ExternalPageFrame, as shown in Figure 6.27.

(ref:ExternalPageFrameTextEntryExample) CKEditor within ExternalPageFrames (html|ib).


[image: (ref:ExternalPageFrameTextEntryExample)]

FIGURE 6.27: (ref:ExternalPageFrameTextEntryExample)




Displaying the number of words already written (or the number of words remaining, if specified) and, for example, detailed JavaScript-based logging of keystrokes is also possible with an ExternalPageFrame, as illustrated in Figure 6.28.

(ref:WordCounterExternalPageFrameExample) TextArea within ExternalPageFrames (html|ib).


[image: (ref:WordCounterExternalPageFrameExample)]

FIGURE 6.28: (ref:WordCounterExternalPageFrameExample)






6.6.3 Adding Speech Recognition using ExternalPageFrame

Speech recognition functions can also be embedded in ExternalPageFrames. A generic variant that should work in many browsers and delivery options is illustrated in Figure 6.29.

Offline: The following item shows an offline capable speech recognition. For this, a large language model must be loaded before spoken language can then be translated into characters without transferring the data to the server. For this example, the model of one language is loaded, i.e. the speech recognition in the CBA ItemBuilder item in Figure 6.29 recognizes only German speech.

(ref:ExternalPageFrameVoskExample) Browser-based Speech Recognition using Vosk and ExternalPageFrames (html|ib).


[image: (ref:ExternalPageFrameVoskExample)]

FIGURE 6.29: (ref:ExternalPageFrameVoskExample)




Online: As an alternative to client-side recognition, some browsers also provide access to server-side speech recognition. The following example in Figure 6.30 will only work in the Chrome browser and requires an internet connection:

(ref:ExternalPageFrameLimitedBrowserSupportExample) Server-based Speech Recognition using window.SpeechRecognition and ExternalPageFrames (html|ib).


[image: (ref:ExternalPageFrameLimitedBrowserSupportExample)]

FIGURE 6.30: (ref:ExternalPageFrameLimitedBrowserSupportExample)




(ref:ExternalPageFrameWithSpeechRecognitionChromeWithRecordding) Reading Task using Server-based Speech Recognition and ExternalPageFrames (html|ib).


[image: (ref:ExternalPageFrameWithSpeechRecognitionChromeWithRecordding)]

FIGURE 6.31: (ref:ExternalPageFrameWithSpeechRecognitionChromeWithRecordding)






6.6.4 Showing HTML5 Package (H5P) using ExternalPageFrame

Using the MIT licensed H5P standalone player it is possible to embed HTML5 Package (H5P) into CBA ItemBuilder projects as interactive content. The following example shows how to display H5P content without using a web server inside the CBA ItemBuilder using ExternalPageFrames (for more details, open ExternalPageFrameH5PIntegrationExample.zip in the CBA ItemBuilder):


[image: Example for the integration of H5P content in an `ExternalPageFrame`.]

FIGURE 6.32: Example for the integration of H5P content in an ExternalPageFrame.




Note: An integration of data storage and xAPI needs to be added.



6.6.5 Including GeoGebra Applets using ExternalPageFrame

Using ExternalPageFrames it is also possible to integrate other interactive content such as GeoGebra applets into CBA ItemBuilder tasks (see figure 6.33, for more details, open ExternalPageFrameWithGeoGebra.zip in the CBA ItemBuilder).

(ref:ExternalPageFrameWithGeoGebra) Integration of GeoGebra content in a ExternalPageFrame (html|ib).


[image: (ref:ExternalPageFrameWithGeoGebra)]

FIGURE 6.33: (ref:ExternalPageFrameWithGeoGebra)






6.6.6 Incluing QTI Item Content using ExternalPageFrame

With the help of JavaScript (client-side) rendering of content in the IMS Question & Test Interoperability (QTI) format, using, for instance the MIT licensed QTI.js library, QTI can be used within CBA ItemBuilder items (see Figure 6.349).

(ref:ExternalPageFrameWithQtiJS) Integration of QTI content using QTI.js and ExternalPageFrames (html|ib).


[image: (ref:ExternalPageFrameWithQtiJS)]

FIGURE 6.34: (ref:ExternalPageFrameWithQtiJS)







6.6.7 Including SurveyJS Questionnaires using ExternalPageFrame

The creation of long surveys with the CBA ItemBuilder is possible but can be more complex than known from survey tools. An easy way to integrate surveys in all delivery modes supported by CBA ItemBuilder (online, offline) is offered by the SurveyJS library.

(ref:ExternalPageFrameWithSurveyJS) Integration of Questionnaires using SurveyJS and ExternalPageFrames (html|ib).


[image: (ref:ExternalPageFrameWithSurveyJS)]

FIGURE 6.35: (ref:ExternalPageFrameWithSurveyJS)




As shown in the following screenshot (see Figure 6.36), the runtime environment of SurveyJS can be inserted into the Embedded HTML Explorer. The JSON configuration of the survey can be stored in the file index.html, which is used as the Local page address in the ExternalPageFrame. This file is part of the CBA ItemBuilder project files and is available at runtime.


[image: Screenshot of the Embedded HTML Explorer using SurveyJS conent.]

FIGURE 6.36: Screenshot of the Embedded HTML Explorer using SurveyJS conent.




The JSON configuration can be assigned, for instance, to a JavaScript variable surveyJSON:

var surveyJSON = <!-- COPY JSON OR JSON STRING HERE--> ;

function sendDataToServer(survey) {
    postLogEvent("SurveyJS results changed to: " + JSON.stringify(survey.data));
    postFsmEvent('EV_NextTask');
}

function doOnCurrentPageChanged(survey) {
    postLogEvent("Page changed to: " + survey.currentPageNo);
}

function doOnValueChanged (sender, options) {
    postLogEvent("Answer changed to: " + options.name + " ; " + JSON.stringify(options.value));
};

var survey = new Survey.Model(surveyJSON);
$("#surveyContainer").Survey({model: survey, onComplete: sendDataToServer});
$("#surveyContainer").Survey({model: survey, onCurrentPageChanged: doOnCurrentPageChanged});
$("#surveyContainer").Survey({model: survey, onValueChanged: doOnValueChanged});


Two further details of the integration are worth mentioning (see ExternalPageFrameWithSurveyJS.zip):


	In order that the administration of the CBA ItemBuilder tasks can be continued after the completion of the survey with the integrated SurveyJS, a function is bound to the onComplete event of SurveyJS. In this function sendDataToServer the answers are passed as JSON String into the log data of the ItemBuilder delivery. After storing the answers, an FSM-event is triggered in order to call, for instance, the NEXT_TASK-command.


	In addition, the onCurrentPageChanged and onValueChanged events are also used by SurveyJS. With their help, the collection of log events is possible that indicate the loading of a page (onCurrentPageChanged), and that identifies a change in response. These two pieces of information are necessary in order to extract response times at item-level for detailed analyses (Kroehne and Goldhammer 2018).




Note that a deeper integration of the data storage might be developed in future.






6.7 Adaptive Testing with the CBA ItemBuilder




6.7.1 Adaptive Testing within CBA ItemBuilder Tasks

Simple forms of adaptivity, e.g. multi-stage tests with routing based on observed scores, can be implemented directly in the CBA ItemBuilder. For this purpose, within a task (i.e. also within a CBA ItemBuilder project) the selection of pages on which items are displayed can be controlled, for example, via the finite state machine.



Adaptivity within CBA ItemBuilder tasks can be implemented using conditional links and finite-state machines, but is limited to fixed branching or adaptivity based on raw-scores.



[image: Example adaptive number series test ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/NumberSeriesExample/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/NumberSeriesExample.zip)).]

FIGURE 6.37: Example adaptive number series test (html|ib).




Inspired by the number sequence test as used in the National Cohort (see Schmiedek et al. 2022), the item in Figure 6.37 illustrates a simple multi-stage test with 8 items.

Each person should be shown only a selection of items. For this purpose, two items are administered in a first stage (A). Based on the number of correct answers in stage A (0 items correct –> B0, 1 item correct –> B1, 2 items correct –> B2), a suitable second stage is then administered. The test is implemented with the CBA ItemBuilder in such a way that it can be operated without keyboard exclusively with buttons, which can be operated by mouse or touch screen. The routing is completely implemented in the Finite State Machine, as is the scoring of the input.

The number series used here in the example do not correspond to the instrument used in NAKO but are example number series as summarized in the following table:10










	Stage
	Item
	Number Series
	Corret Response





	A
	1
	5, 6, 9, 14, 21, __
	30 (+1,+3,+5,+7,+9; The series consists of a pattern of addition of consecutive odd numbers.)



	
	2
	1, 3, 9, 27, __ , 243
	81 (*3*3, *3*3, *3*3, *3*3, *3*3; Next number of this series is multiplication of 3 with previous one. )



	B1
	3
	1, 3, 6, 11, 18, __
	29 (+2,+3,+5,+7,+11; The series consists of a pattern of addition of prime numbers.)



	
	4
	1, 2, 6, 15, 31, __
	56 (+12+1^2,+22+2^2,+32+3^2, +42+4^2; The series is based on addition of squares of consecutive natural numbers.)



	B2
	5
	32, 19, 8, __
	1 (-13,-11,-7; The series consists of a pattern of subtraction of prime numbers.)



	
	6
	225, 100, 36, 9, 1, __
	0 (−53-5^3, −43-4^3, −33-3^3, −23-2^3, −13-1^3; The series is based on subtraction of cubes of consecutive natural numbers.)



	B3
	7
	1296, 648, 216, 108, __, 18, 6, 3
	35 (/2/2, /3/3, /2/2, /3/3, /2/2, /3/3, /2/2; The terms are divided by 2 and 3 alternately.)



	
	8
	71, 55, 46, 42, __
	41 (−42-4^2,−32-3^2,−22-2^2, −12-1^2; The series is based on addition of squares of consecutive natural numbers.)








6.7.2 Adaptive Testing across CBA ItemBuilder Tasks

Adaptivity across CBA ItemBuilder tasks must be supported by the deployment software. The R package ShinyItemBuilder provides a simple example to implement an adaptive test using CBA ItemBuilder tasks and R/Shiny (see 7.3.3).




6.8 (More) Efficient use CBA ItemBuilder



The CBA ItemBuilder is a complex tool for designing interactive assessment components. The features described below and hints on how to use the CBA ItemBuilder can help to work efficiently with this tool.


6.8.1 Window Management

Section 3.1 describes the user interface of the CBA ItemBuilder in the default configuration (i.e., after a fresh installation). The arrangement of views in the three columns of the CBA Item Builder’s user interface can be adjusted and configured according to the user’s needs (and the available space on the screen). The video included in the item in Figure 6.38 shows how to customize the user interface of the CBA ItemBuilder.


[image: Item illustrating Window Management in CBA ItemBuilder ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/WindowManagementVideo/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/WindowManagementVideo.zip)).]

FIGURE 6.38: Item illustrating Window Management in CBA ItemBuilder (html|ib).






6.8.2 Available Fonts and Font-List

Assessment content created with CBA ItemBuilder is used in a web browser at runtime. Accordingly, only fonts available for display in the web browser should be used.

Web Safe Fonts: Fonts that should be available in all browsers and result in similar renderings are called Web Safe Fonts. The following fonts are typically considered to be web safe:


	Arial (sans-serif)

	Verdana (sans-serif)

	Tahoma (sans-serif)

	Trebuchet MS (sans-serif)

	Times New Roman (serif)

	Georgia (serif)

	Garamond (serif)

	Courier New (monospace)

	Brush Script MT (cursive)





Remark: The behavior of the CBA ItemBuilder regarding fonts (still) described below will change in the next version (10.0). CBA ItemBuilder will support web fonts, that can be added to CBA ItemBuilder project files as ressources.


Font List: The CBA ItemBuilder uses the fonts registered on the system and therefore offers quite many fonts (e.g., in the editors for TextFields, HTMLTextFields and in the Appearance tab of the Properties view). This (usually) long font list should be reduced to the fonts that are planned to be used (i.e., Web Safe Fonts and similar fonts across several items). Since the item contents created with the CBA ItemBuilder are rendered in the browser, it must also be taken into account when selecting the fonts that these must then be available on the target system.



If unique fonts (not web-safe fonts) are used, which are available on the computer on which the CBA ItemBuilder is executed, then these fonts are also available in the Preview. This does not mean, however, that the fonts can be displayed identically in operational assessments (because this requires the fonts to be available on the device on which the items are answered).


To reduce the list of fonts available in the CBA ItemBuilder to design items, the list of CBA Item Fonts can be configured (see Figure 6.39) in the section CBA Item Fonts in the Preferences (menu Utilities > Preference).


[image: 'CBA Item Fonts' setting of the CBA ItemBuilder.]

FIGURE 6.39: ‘CBA Item Fonts’ setting of the CBA ItemBuilder.




To adjust the list first remove the selection in this list using the Deselect All button and then select the fonts you want to use by clicking on them. You can also export (Export Font Selection) and import (Import Font Selection) fonts if you want to use different fonts for different projects or assessments.



6.8.3 Color Codes

The same selection dialog is always used to define color in different editors of the CBA ItemBuilder. Colors can be chosen from a selection of example colors or defined precisely in different formats (HSV, HSL, RGB, and CMYK, see Figure 6.40).

Save Selected Colors: To avoid entering identical color values multiple times, the dialog shown in Figure 6.40 also allows to Add a color to the user-defined buttons of Recent colors.


[image: Color selector (*Choose Color*) of the CBA ItemBuilder allows storing *Recent*-colors.]

FIGURE 6.40: Color selector (Choose Color) of the CBA ItemBuilder allows storing Recent-colors.




Colors in the Properties View: The CBA ItemBuilder uses a color representation in the tab Core of the Properties view as decimal numbers (e.g., white is represented by DEC -1, corresponding to hex #FFFFFF, black is represented by DEC -16777216, corresponding to hex #000000). The item shown in Figure 6.41 contains via an ExternalPageFrame an example of JavaScript functions to convert the decimal colors of the CBA ItemBuilder into other formats.


[image: Item for Color Conversion of CBA ItemBuilder's internal Color Representation ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/CBAItemBuilderColorConverterHelper/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/CBAItemBuilderColorConverterHelper.zip)).]

FIGURE 6.41: Item for Color Conversion of CBA ItemBuilder’s internal Color Representation (html|ib).






6.8.4 Error Messages

When using the CBA ItemBuilder, especially when calling the Preview and saving Project Files, error messages are displayed if the created assessment content is inconsistent. While this might be confusing when using the CBA ItemBuilder for the first time, the error messages typically give precise information on where to find the inconsistency. The item shown in Figure 6.42 allows searching for error messages and provides additional tips on fixing the issues.


[image: CBA ItemBuilder Error Messages ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/CBAItemBuilderErrorMessages/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/CBAItemBuilderErrorMessages.zip)).]

FIGURE 6.42: CBA ItemBuilder Error Messages (html|ib).






6.8.5 Hints for Designing Interactive Items



Remark: The behavior of the CBA ItemBuilder regarding the implementation of the zz-order (still) described below will change in the next version (10.0).


The CBA ItemBuilder gives item authors a wide range of freedom in designing assessment components. Some hints are compiled below to ensure that the resulting items work well (and look good, if possible).



Visual Overlapping Components: The CBA ItemBuilder allows to place elements freely using X and Y coordinates within containers (i.e., Frames, Panels etc., see Page Editor in section 3.1.3), and each component has a size defined as Width and Height. The item authors’ responsibility is to ensure that the components created and designed in the Page Editor are displayed appropriately (i.e., in a meaningful order).



Overlapping Components should be avoided if possible as they can affect the behavior of items when foreground elements prevent the processing of events, links and commands. The CBA ItemBuilder uses a fixed Z-Order that takes into account the nesting (i.e., containers with child elements) and the type of components (grouped into layers). Only within these layer the Z-Order corresponds to the order components are generated and listed in the Component Edit view.


Z-Order: If multiple components are defined on a page, they are displayed in a specific order. This order can be called the Z-Order (i.e., besides X and Y for horizontal and vertical placement, the Z-Order defines the order concerning a third dimension, Z). In most use cases, item authors do not need to worry about the Z-Order any further since it essentially follows from the container principle (see section 2.11.4): The elements within a container (child elements) are always rendered on top of the containers itself (parent elements). The CBA ItemBuilder automatically applies this rule, together with an additional grouping of components within containers into meaningful layers.

The layers group components within containers by component type. Only for components in the same layer the order in which components are listed in the Component Edit view (i.e., the order in which components are created).11

Functioning Affected by Overlapping Components: Although the CBA ItemBuilder approach of avoiding user-defined Z-Orders by applying heuristics based on layers was proven to be useful over the last years, item authors should be aware of the issue that overlapping components can result in a particular functioning. If, for instance, an HTMLTextField is placed so that it entirely or partially covers a Button (see Figure 6.43 for an example), the functioning of the Button might result in unexpected behavior. The same is true for various other components. If something overlaps with SingleLineInputFields, it can become difficult or even impossible to enter any text into the SingleLineInputField. Therefore, when designing assessment components, ensure that the components do not overlap or only overlap sensibly.

The difference between the Visual Z-Order and the Interactions Z-Order can be seen in Figure 6.43.


[image: Item illustrating overlapping components in CBA ItemBuilder ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/OverlappingComponentsIllustration/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/OverlappingComponentsIllustration.zip)).]

FIGURE 6.43: Item illustrating overlapping components in CBA ItemBuilder (html|ib).




The left side in Figure 6.43 shows a screenshot of the design time from the Page Editor. HTMLTextField 1 is shown below the button, overlaid by HTMLTextField 2. In the Preview and at Runtime, as shown on the right, the CBA ItemBuilder follows this structure regarding the filled background (white color) and the border (red color). But note that the text in HTMLTextField 1 is displayed above the Button. An identical rendering is also created by the CBA ItemBuilder for HTMLTextField 3, i.e. similarly the text overlays the SingleLineInputField, although the filled white background and the red border are rendered behind the SingleLineInputField.

Exploring the behavior (i.e. the Interactions Z-Order) in the item shown in Figure 6.43, we see that not only the text HTMLTextField 1 and HTMLTextField 3 overlay the underlying components Button and SingleLineInputField. Also, due to the overlapping of the components, the connected events are forwarded to Button and SingleLineInputField only at the points where no HTMLTextField is defined.

Scrollbars: When collecting diagnostic information (i.e., when assessment content is created with the CBA ItemBuilder), the necessity to scroll should be used as controlled as possible. Following this principle, assessment content created with the CBA ItemBuilder is designed for screen sizes (i.e., for an aspect ratio) called CBA Presentation Size (see section 3.2.2).

Scrollbars will automatically appear when pages are larger (in width and height) than the available space.12 The available space for simple pages (i.e., pages at the highest hierarchy level) is identical to the CBA Presentation Size, minus the space of an optionally configured X-Page (see section 3.4.2). Similarly, pages within PageAreas (see section 3.5.4) or TreeViewArea (see section 3.9.9) and Web Child Pages within a WebChildArea (see section 3.13.2) are always displayed with scrollbars if the width or height of the embedded exceeds the width or height of the corresponding area.



If unintended scrollbars appear in the preview, it is suggested to remove them by making sure that no page is larger than the available space. The size of a page is defined as the Widht and Height properties of the Frame.


Un-proportional Scaling of Images and Videos: Images and videos added as resources to CBA ItemBuilder projects have a native resolution, i.e., a size defined in pixels (height and width). For optimal display, images and videos should be added to CBA ItemBuilder items in the size they will be displayed by the corresponding component (see section X). The Page Editor allows resizing components to display image and video resources.



Avoid scaling images non-proportionally (i.e., changing width and height independently of each other and not maintaining the aspect ratio)!


If images or videos are larger than they will be used during display, the resources will be unnecessarily large and may produce load times that could be avoided by scaling the resources before insertion. If images or videos are smaller than the area used for display, they are scaled up and may only be visibly blurred.

Standardize Page Layout Across Pages: Test takers typically see many individual pages during the processing of assessments created with the CBA ItemBuilder. It is recommended to standardize spacing, font, font size, formatting (font color, bold, italics), etc., as much as possible to ensure a consistent appearance for the test takers.



6.8.6 Export and import Pages

In order to use once-designed pages multiple times when designing multiple assessment components with the CBA ItemBuilder, multiple tasks can be defined within one project file (see Task Editor in section 3.1.4 and tips on the division of content to tasks in section 3.6.3). This approach is recommended if feasible, as it eliminates the need to make copies of pages.



Using CBA ItemBuilder project files with multiple tasks is recommended to avoid duplicating pages.


If there are already designed and tested CBA ItemBuilder assessment components that already contain the required functionality, it can also be efficient to use them as templates. The CBA ItemBuilder provides the Save As feature, and the project name can be changed using the Rename Project function (see section 3.2.1). If this approach is chosen, potential changes that are made to the source file afterward must also be applied to the copy.

Export Page: If instead of an entire project file only a single page is to be moved or copied from one project to another, CBA ItemBuilder provides the option to export pages in the context menu (right-click on the project name) of the Project Tree (see Figure 6.44).


[image: Context Menu in the *Project Tree*.]

FIGURE 6.44: Context Menu in the Project Tree.




One page at a time can be exported and saved as a ZIP archive.

Import Page: Using the similar function Import Page, pages can be inserted into another CBA ItemBuilder Project File.



6.8.7 Working with Page-Templates

If pages are exported via the Export Pages function as in the past section 6.8.6, they are available as ZIP archives in the file system and can be copied, moved, and (for instance) sent as files or uploaded to versioning systems (see section 8.3.2).

If pages are to be used as templates on a computer (i.e., within one instance of the CBA ItemBuilder), the CBA ItemBuilder additionally provides the template functionality.

Save Page as Template: Using the context menu (right-click on the project name) of the Project Tree (see Figure 6.44, pages can also be stored as Template. Templates need a unique name (see Figure 6.45) and are stored inside of the CBA ItemBuilder.


[image: Dialog to specify the name of a *Template*.]

FIGURE 6.45: Dialog to specify the name of a Template.




Create Page from Template: Pages saved as templates can then be used to create new pages within a CBA ItemBuilder Project File. The toolbar contains the icon  for this purpose, and the function is also accessible via the context menu in the Project View.

Template Browser: Selecting and managing page templates is done in the Template Browser (see Figure 6.46). After entering a name for the new page to be created, a template can be used with Create Page. If Skip Preview is not selected, then the view from the Page Editor is displayed in the Template Preview area. Figure 6.46 shows that templates (analogous to pages) can also be exported or imported. The Delete Template button can be used to delete a template from the CBA ItemBuilder instance.


[image: Dialog to specify the name of a *Template*.]

FIGURE 6.46: Dialog to specify the name of a Template.




When pages are created from templates, they can be flagged with the XPage and StandardPage tags.



6.8.8 How to run two CBA ItemBuilder Simultanously

The CBA ItemBuilder is an application that can be started only once per installation. The underlying reason is that each CBA ItemBuilder installation (also referred to as instance in the following) has its dedicated workspace in which the contents of a CBA ItemBuilder Project File are unpacked during processing.

At the same time, when creating many (as uniform as possible) assessment components with CBA ItemBuilder, it can be helpful to have a Project File open to view implementations there while working on another project file in a second CBA ItemBuilder (see Figure 6.47 for an example).





Installing multiple instances of the CBA ItemBuilder is required to run multiple CBA ItemBuilders in parallel.


Multiple Instances: The CBA ItemBuilder can be installed multiple times to run several instances in parallel. Each installation must have its own directory. In addition, a so-called port (i.e., a dedicated connection address on the computer on which CBA ItemBuilder is installed) must be different for each instance. Therefore, after installing a second CBA ItemBuilder or copying the entire program directory, a port configuration must be changed for one of the instances to be operated in parallel.


[image: Example screen shot running two CBA ItemBuilder in parallel.]

FIGURE 6.47: Example screen shot running two CBA ItemBuilder in parallel.




The following steps are necessary to manually enable the use of two instances of the CBA ItemBuilder:


	Install the CBA ItemBuilder (if not yet done, as described in section 1.1).


	Locate the program directory. By default this should be `C:/users/{UserName}/AppData/Local/CBA-IB-{Version}´


	Duplicate the sub-directory IB (i.e., create a copy of the directory IB and rename it to IB2).


	Find the file cba-itembuilder.ini in the duplicated folder (IB2) and open it with a text editor (e.g., notepad).


	Change the number that is assigned to the Djetty.port to a higher and different value, e.g.:




-Djetty.port=7072


	Save the file cba-itembuilder.ini and close the editor.


	Create a new shortcut in Windows Explorer to the file cba-itembuilder.exe in the directory IB2. Starting this application from the copied directory should now be possible in parallel to the application from the directory IB.




Make sure you never open an identical CBA ItemBuilder Project File in two instances in parallel. The clipboard (see section 3.7.2) cannot work between different instances of CBA ItemBuilder, i.e., if something is copied in one instance, it cannot be pasted in another instance. To transfer content from one instance to another, the function to export and import pages is available (see section 6.8.6). Alternatively, to transfer content within an instance, the template function can be used (see section 6.8.7).




6.9 Creating Assessments in Multiple Languages




The current CBA ItemBuilder supports assessment content in one language at a time. If assessment components are required in multiple languages, they can be translated with the CBA ItemBuilder as an authoring tool and saved in another CBA ItemBuilder Project File. In addition to the manual translation of all texts directly within the Page Editor, CBA ItemBuilder also supports a translation workflow based on the XLIFF format. Several details should be considered when designing items and implementing workflows to use this functionality efficiently. Use the contact options (see section 1.2) to learn more about XLIFF support.









	Note that the flavor of regular expressions used by the CBA ItemBuilder is based on Unicode: http://www.unicode.org/reports/tr18/↩︎


	For creating and testing regular expressions, there are a number of helpful web resources available, such as https://regex101.com and http://regexr.com.↩︎


	The generation of many image files (e.g., to display texts in a non-web-safe font) can also be automated before the images are then inserted into the CBA ItemBuilder. Here is a simple example where texts are read from an Excel file and generated as small image files↩︎


	A free tool to generate speach from text can be found here: https://ttsmp3.com/.↩︎


	The example can be found in the file ComponentsAsLabelsForRadioButtonsFSMExample.zip.↩︎


	Note that HTMLTextField could also be used with Conditional Links (see section 3.11.3).↩︎


	Instead of buttons other components can be used for input if they can be assigned to an event (e.g. ImageValueMaps).↩︎


	The source can be found at github in the repository https://github.com/DIPFtba/calculator↩︎


	The example does not include data storage, that can be added, for instance, using postMessages to send data to the CBA ItemBuilder trace data↩︎


	Source: https://learnfrenzy.com/reasoning/logical-reasoning/number-series↩︎


	Note that in the current version of the CBA ItemBuilder, changing the order of components is only possible by creating the components in the required order.↩︎


	The size of pages is defined using the Widht and Height properties of the Frame↩︎








  
  
  ch009.xhtml
  
  




7 Test Assembly and Deployment



After the previous chapters focused on the creation of individual item projects (i.e. CBA ItemBuilder project files together with one or multiple tasks as the entry points), this chapter is about the use of these item projects for operational test administration and data collection.



It is not possible to perform or administer an assessment with the CBA ItemBuilder alone. A particular delivery software is always required, and various software tools can be used to integrate CBA ItemBuilder items. Moreover, identical CBA ItemBuilder items can be administered with different tools in different conditions (for instance, offline and online).



7.1 Quick-Start: Assessments using R (and Shiny)



To follow this quick-start tutorial, download and install R and, for instance, R-Studio.1 After this installation open R and install the packages: shiny, remotes, knitr and ShinyItemBuilder:

install.packages("shiny")
install.packages("remotes")
install.packages("knitr")
remotes::install_github("kroehne/ShinyItemBuilder", build_vignettes = TRUE)


When both packages are installed, the CBA ItemBuilder projects are required. The project files are expected in the folder provided as argument to the function call getPool(). Additional arguments are possible to define the order if tasks within the item pool (by default, all files and tasks are included, ordered by name).

In the following example, we use the function getDemoPool("demo01")to illustrate the use of the package with example items:

# app.R

library(shiny) 
library(ShinyItemBuilder)

# demo items 
item_pool <- getDemoPool("demo01")

# your items woudl be loaded via
# item_pool <- getPool(path="PATH-TO-YOUR-IB-PROJECTS")

assessment_config <- getConfig() 

shinyApp(assessmentOutput(pool = item_pool,
                          config = assessment_config,
                          overwrite=T), 
         renderAssessment)
         


The assessment is started by executing the complete file app.R.

The items can be answered in a browser using the URL either started automatically or displayed by R / Shiny (e.g., http://127.0.0.1:PORT)2. More configurations are possible (see section 7.3). If you have an account for shinyapps.io, the assessment can be published directly from RStudio and used for data collections online (see section 7.3 for details).3



7.2 (Technical) Terminology and Concepts



Finding an appropriate test delivery software requires some technical considerations. Before describing the available tools, this section briefly describes some important technical terms and concepts.


7.2.1 Deployment Mode (Online, Offline, Cached and Mobile)

All assessments created with the CBA ItemBuilder require a web browser or browser component for rendering the generated HTML / JavaScript content. Web browsers are available on various devices, including desktop and mobile computers, cell phones, televisions, and game consoles. CBA ItemBuilder items can be used one way or the other on various platforms with built-in modern web browsers.



Computer-based or digitally-based assessments can be used in various ways for data collection and empirical research. Before selecting the appropriate software, it is therefore helpful to clarify the different deployment modes.


Online Deployment: The assessment is conducted in a supported web browser, constantly connected to the internet, and data are stored on a web server. Accordingly, some technology is required for hosting the assessment. The required hosting technology depends on the deployment software, including, for instance, R/Shiny (see sections 7.1 and 7.3) or PHP-based web hosting or cloud technologies (e.g., using TAO, see section 7.4), or any server-side technology (e.g., dotnet core used either directly or containerized for the software described in section 7.5).

Offline Deployment: The same software components as for the online deployment (i.e., the assessment is conducted in a web browser, together with a server component), but the server- and browser components run on the same device. Accordingly, items and data are stored only locally, and an internet connection is neither required to prepare nor run the assessment. Data are collected by copying the data from the local devices or by collecting the devices (e.g., thumb drives).

Cached Deployment: The assessment is conducted in a web browser connected to the internet while the assessment is prepared, but no (reliable) network connection is required during the assessment. Hence, data are stored locally, and after the assessment is finished, data are collected either online or by copying the data from local devices.

Mobile Deployment: Mobile deployment is a specific offline or cached assessment conducted on a mobile device. Since mobile devices are used, either a native app or a progressive web app is used (instead of a server), and test execution is possible even if there is no reliable internet connection (i.e., it is a cached deployment on mobile devices). When internet connectivity is available, data can be stored simultaneously online or transferred when connectivity is available.

Mobile deployment is specific in different ways. Firstly, no direct file access is typically possible on mobile devices (instead, data are transferred via the internet). Secondly, an app can stay accessible after installation, allowing the implementation of prompts or notifications that are either offline or triggered via so-called push notifications can try to attract the test-taker’s attention. Third, mobile devices are often equipped with additional sensors that can contribute to the collected data (and paradata) if incorporated by the app.



7.2.2 Browser Requirements and Availability of (Embedded) Content

Since assessments created with the CBA ItemBuilder are always displayed in a web browser or a browser component4, Cross-Browser Compatibility and Browser Requirements need to be considered.

Browser Requirements: Not all browsers support all features, adhere to the usual standards, show HTML, and similarly interpret JavaScript content. A typical approach is, therefore, to test the prepared assessment content in different browsers and then, if necessary, restrict the assessment to specific browser versions.

For rendering the CBA ItemBuilder generated content, the React framework is used internally in the current versions.5 React is supported by modern browsers, and so-called polyfills could be added for older browser versions.6 However, the deployment software used to combine CBA ItemBuilder tasks to tests might add additional requirements to be available to run assessments successfully. DIPF/TBA provides tools for online assessment (e.g., IRTlib, see section 7.5) that require a web browser that supports WebAssemblies. Using the TaskPlayer API, additional deployment software can be implemented with other server technology and for all browsers or browser-components supporting React.

Besides the deployment software, special attention regarding browser support is also required for content that is integrated into CBA ItemBuilder items via ExternalPageFrames (see section 3.14). These extensions, created by JavaScript / HTML programmers, are integrated into items using so-called iframes and must be checked to ensure that they function correctly in all browsers used for an assessment.



Limitations of the browsers that can be used for an assessment can be due to different languages (e.g., the CBA ItemBuilder runtime, the deployment software used, and the content included as an ExternalPageFrame).


Limitations, for example in playing videos, can also be caused by configurations of the web server (e.g. the configuration to support range HTTP requests).

Cross-Browser Compatibility: If the browsers used in online deliveries cannot be controlled and standardized, it is recommended to test the assessments in advance in different browsers. On Windows computers, the display and functioning of CBA ItemBuilder items in locally installed browsers can also be tested by using the regular Preview and copying the preview URL (see section 8.4.1). To check cross-browser comparability of CBA ItemBuilder deployments (see section 8.4.1), an online deployment must be prepared first (for instance, using the R/Shiny example described in section 7.1).

A very efficient approach to testing the compatibility of assessments in different browsers is to use third-party vendors that provide web-based access to different browser versions on different devices (cloud web and mobile testing platforms, such as BrowserStack, or similar services).

Availability of (Embedded) Content: Content embedded Using ExternalPageFrame must not only be working in the browser that are expected to be used for an assessment. The embedded material must also be available during the assessment. The use of Local resources is required for offline deployment. Moreover, network connection must be stable and provide enough bandwidth for resources included as External resources (see section 3.14 for the configuration of components of type ExternalPageFrame).

Special attention is required when multiple assessments share the same internet connection, For instance, it must be possible to load large audio and video files fast enough, even if, for example in a class context, all test-takers share a network access. Factors that influence the bandwidth are besides the storage of data (upload of log data, result data and data for recovery, see section 7.2.9) especially the download of media files (images, videos, audio files) that have to be transferred from the server to the client. The underlying Taskplayer API (see section 7.7) provides methods to implement the pre-loading of media files.



7.2.3 Fullscreen-Mode / Kiosk-Mode

Test security (see section 2.10) can translate into different requirements, particularly for high-stakes assessments. To standardize assessments, the assessment content should fill the entire screen if possible. Depending on the deployment method, this goal can only be approximated (although not guaranteed in certain browsers or on mobile devices) using Fullscreen-Mode.

Fullscreen-Mode: In online assessments, a full-screen display of assessment content can be possible in (regular) browsers on computers with desktop operating systems (Windows, Linux, macOS), and Fullscreen-Mode must be initiated typically by a user interactions. However, since test-takers can exit full screen mode at any time, the assessment software might hide at least the item content when full screen mode is exited.

Mandatory Fullscreen: For assessments on desktop computers, a requirement can be to ensure that the assessment is only displayed if the browser is in full-screen mode. Since even browser-based assessment software can, to some extent, diagnose that the current view is part of a full-screen presentation, assessment software can make the full-screen presentation mandatory. If a test-taker exits the full-screen presentation, different actions can be considered: Access-related paradata (i.e., a particular log event) can be created, a test administrator can be informed using, for instance, a dashboard (see section 7.2.4), or the assessment content could be faded-out, advising test-takers to return to the full-screen presentation before an assessment can be continued.

Kiosk-Mode: In offline deployments (or if a pre-defined browser is provided for online deployments), a so-called Kiosk-Mode prevents users (i.e., test-takers) from exiting the full-screen presentation of assessment content. Various browsers and add-on’s offer Kiosk-Mode for different operating systems. For instance, the offline player provided as part of the IRTlib-software (see section 7.5) provides a Kisok-Mode for Windows.

A free software solution for establishing test security on computers with Windows, macOS and iOS operating systems, which is used in a variety of application contexts, is the Safe Exam Browser (SEB). Since SEB is a (standard) HTML browser, which has only been supplemented with additional components and configurations for test security, this software can be combined in various ways with the CBA ItemBuilder deliveries.



7.2.4 Interviewer-Menu, (Live) Dashboard and (Remote) Proctoring

While a test-taker answers items in a browser, various test administrator observations or interactions (on-site or remotely) may be possible.

Interviewer-Menu: The simplest form, which is also possible for offline deliveries, is an interviewer menu (meaning an interviewer or test administrator can change or configure the course of an assessment on the test-taker’s device). Interviewer menus are typically protected by a password or a hidden keyboard shortcut, so only test administrators can access the features prepared for administrative purposes. Typical functions include the possibility to skip a single task or item, to pause or end an assessment or to jump to a particular section of the assessment.

(Live) Dashboards: If the assessment takes place on a computer that is accessible via network (locally or on the internet), control by interviewers or test administrators can also be realized via a Dashboard. Unlike an interviewer menu, the functions for monitoring or controlling an assessment using a dashboard are available on a different device than the device on which a test-taker is working on tasks or items. Dashboards can be used for various purposes, for instance, to implement supervised online testing, where an interviewer is informed about the progress of the test-taking and can, for example, give further instructions or answer questions via telephone, text, or video chat.

(Remote) Proctoring: Remote proctoring is a particular form of a dashboard in which additional information from a webcam or microphone can be displayed or automatically evaluated. Dashboard and remote proctoring can be (partially) automated using artificial intelligence techniques, and different types of play (related to privacy and informed consent) are possible.



7.2.5 Input and Pointing Device

Special considerations are required regarding the input devices used for point-and-click and text responses.

Touchscreen vs. Mouse-Click: Assessments on touchscreens (i.e., using touch-sensitive displays) require additional thoughts for at least two other reasons. First, it is inherent in touch operations that the place where the touch gesture is performed (using either a finger or a specific stylus) is not visible when the finger covers parts of the screen. Hence, if a small area needs to be clicked precisely, this property must be considered when designing the interactive item. Second, web browsers might treat touch events differently from click events. In particular, for content embedded as ExternalPageFrame, it is necessary to ensure that touch and click events are treated by the JavaScript / HTML5 content in all browsers as expected.

Touch devices might also, by default, use additional gestures, including pinch zoom gestures and, for Windows operating systems, the so-called charms bar (activated using a touch gesture over the edge of the screen).

Touchpad vs. Mouse-Click: If notebooks with touchpads are used, an external mouse might be considered for standardization purposes (i.e., to make sure that test-taker can answer the assessment regardless of their familiarity with touchpads), and touchpads might be deactivated to avoid distraction when typing and clicking is required.

(Onscreen) Keyboard and Text Entry: Text and numeric entries in assessments are usually recorded using a built-in or connected keyboard. Text input might automatically trigger an on-screen keyboard for devices with a touch screen. The operating system automatically displays the on-screen keyboard and then reduces the space available on the screen for the item content. In addition, the on-screen keyboard might allow the test-taker to exit Kiosk-Mode.

Careful usability testing (and if a Kiosk-Mode is planned, robustness checks regarding test security) are necessary, particularly on touch devices.



7.2.6 Authentification / Account Management

Regardless of the specific software used for test delivery, the following terms are relevant to web-based assessments.

Session: An essential concept for online assessments is the so-called session. Even if data collection takes place entirely anonymously (i.e., without access restrictions), all data belonging to one person should ideally result in one data record. Accordingly, the session is the unit that bundles the data that can be jointly assigned to one (potential) test-taker. With the help of client-side storage (i.e., session storage, cookies, or local storage), the ID of a session, which is usually created randomly, can be stored so that the data for an assessment, if interrupted and continued from the same test-taker, can be matched. Sessions IDs can be stored within a particular browser on a computer if the client-side storage is activated and the test-taker agrees to store client-side information.

Log-in/Password vs. Token: Authentication for online assessments can use Log-in and Password (i.e., two separate components) or a one-time Token (i.e., only one component). Often, there is no reason to arbitrarily separate log-in and password if the identifier is created as pseudonym only for a particular data collection. A distinction can be made with regard to the question of whether the assessment platform checks the validity of the identifier (access restriction) or if the identifier is only stored.

Protection of Multiple Tabs/Sessions: Finally, when a particular authentication is implemented, it must be considered that the log-in can potentially occur multiple times and in parallel. The delivery software might ensure that an assessment with one access (e.g., log-in/password or token) cannot be simultaneously answered and accessed more than once.



7.2.7 Task-Flow and Test Assembly

As described in section 2.7 items (i.e., in case of CBA ItemBuilder assessments Tasks) can be combined in different ways to assessments. Using the CBA ItemBuilder, the assembly of individual assessment components into tests is part of the test deployment software. An assessment component is any component that can be meaningfully used as component, including a log-in page, cover pages, instruction pages, the actual items or units, and exit or closing pages shown to test-takers.

Linear Sequence: The most common arrangement of assessment components is a Linear Sequence. CBA ItemBuilder Tasks can create a sequence that might contain items, prompts, feedback pages and dialog pages. As long as the same sequence is used for all test taker, all deployment software can be used that support linear sequences.

Booklets: If different sequences or combinations of CBA ItemBuilder Tasks are used (of which each target person works on exactly one), the procedure corresponds to so-called Booklets (or test rotations). Depending on the study design, the assignment of a test taker to a particular booklet or rotation is either done in advance (usually assigned to log-ins or tokens, see 7.2.6), or the assignment is done on-the-fly when a session is started.

Skip Rules: The deployment software for CBA ItemBuilder assessments is also responsible for omitting or skipping Tasks depending on previous responses. This functionality is only required for the test deployment software, if the skip rule can not be implemented within CBA ItemBuilder Tasks (using, for instance, multiple pages and either conditional links or the CBA ItemBuilder task’s finite-state machine).

Multi-Stage Tests and Adaptive Testing: The more complex and elaborate the calculations become, which are required for the selection of questions (or pages in a CBA ItemBuilder task), and the more items in total are available, the more complicated the implementation within a (single) CBA ItemBuilder task becomes. Accordingly, special delivery software is required to implement complex multi-stage tests and item- or unit-based, uni- or multidimensional adaptive tests using CBA ItemBuilder items (see section 7.5).



7.2.8 Time Limits across Tasks

Analogous to a sequencing of assessment content across individual parts (such as Tasks in the case of CBA ItemBuilder created assessments), the time restriction across tasks can be provided by a deployment software.

Time Measurement: The requirement of a time limit across tasks typically exists only for the actual items of a (cognitive) test, while before and possibly after the time-restricted part further content, for instance, with instruction pages and a farewell page are administered. Moreover, if a time limit across tasks is used, one or multiple additional pages are often shown, when the timeout occurred.

Remaining Time: When the minimal time to solve a particular item is known or can be approximated, the deployment software might apply the time limit already at a Task-switch (i.e., when in CBA ItemBuilder based assessments a new task is requested based on a NEXT_TASK-command, see section 3.12.2), if the remaining time (i.e., the time before the time limit will occur) is below the expected minimal time that would be required to work on the (requested) next task.

Result-Data (Post-)Processing and Timeouts: Time limits not only affect the presentation of items, meaning that within a particular section of the assessment no more items (i.e., Tasks within CBA ItemBuilder project files) are presented, when a timeout occurred. Time limits also affect the (missing) coding of the responses in the current task and in all subsequently tasks, not presented because of a timeout.

First, it is important to note, that the deployment software requests the ItemScore (see section 7.7) for the current item (i.e., Task within an CBA ItemBuilder project file) when a timeout occurs. Second, within this task, variables (i.e., classes) can be coded as Not Reached (NR), if the corresponding questions were not yet presented in a Task with multiple pages. Hence, the differentiation between Not Reached (NR) and Omitted Responses (OR) for Tasks with multiple parts must be included in the (regular) CBA ItemBuilder scoring (see section 5.3.11).

For assessment components not presented because of a timeout (or because an interviewer aborted the test, see section 7.2.4), no ItemScore will be available, because it is computed only when a Task is exited. Hence, the deployment software is required to determine the remaining tasks that would have been presented without the interruption and assign the appropriate missing code, either Not Reached (NR) in case of a timeout or Missing due to Abortion if an interviewer aborted the assessment.



7.2.9 Date Storage and Test-Resume

Regardless of the deployment software, there are some data types that arise in all CBA ItemBuilder-based data collections. These are briefly described in this section.

ItemScore (Result Data): When exiting CBA ItemBuilder items by a task-related command (see section 3.12.1) or by an external navigation request of the delivery environment (timeout or test abort), the defined scoring rules (see section 5.3) are evaluated. In the current version of the CBA ItemBuilder (i.e., for the REACT generator), the ItemScores are provided by the runtime as JSON data and collected by the delivery platform.

Traces (Log Data): In addition to the ItemScore data, trace data are provided automatically by the CBA ItemBuilder runtime. The data are provided as individual log events and can be collected by the deployment software or even be analyzed already instantly during the assessment.

Snapshot: In addition to the two data collected for further empirical analyses, snapshots of all internal states that represent the tasks are provided by the runtime so that even in case of interruptions, the possibly complex CBA ItemBuilder tasks can be continued at the last processing state.

Assessment content that is embedded into CBA ItemBuilder items using ExternalPageFrames can use the Snapshot of the CBA ItemBuilder Runtime to implement persistence of content across page changes (see section 4.6.5).





7.3 Using CBA ItemBuilder Items with R (Shiny Package)





The R package ShinyItemBuilder allows using CBA ItemBuilder items in web-based applications created with R/Shiny. This allows local administration of tests (from RStudio) and online adminsitration using, for instance, www.shinyapps.io (or hosting shinyproxy).


The use of R/Shiny for assessments is advantageous for two main reasons: It combines the data collection (seemingly) with the (psychometric) use of gathered responses data and collected log events. Moreover, since an easy-to-use infrastructure for Shiny applications exists, it enables a swift approach to run online assessments without setting up a dedicated hosting environment. Although this hosting might be less performant than hosting using more standard web technologies, item authors can use R-functions to customize the test assembly (e.g., for multi-stage and adaptive testing).

Concerning the different modes of test deployment (see section 7.2.1, R/Shiny can be used for stand-alone deployment either locally, or online.


	Local: The assessment is started directly from R locally, and test-taker answer items in a browser on the same computer.7


	Online: The assessment is hosted using R / Shiny on a server (e.g., using www.shinyapps.io), and test-takers answer the items in a browser, either on a desktop device or even on a mobile device.




Note that even if an online deployment should be created using the R package ShinyItemBuilder, the preparation is done locally in R. After completing the preparation, the Shiny app is deployed to the online server.


7.3.1 Use of CBA ItemBuilder Project Files in ShinyItemBuilder

The R/Shiny package ShinyItemBuilder needs to know which items should be administered. This can be defined by providing an item pool, created from a folder with CBA ItemBuilder project files or a list of CBA ItemBuilder project files and optional tasks.

item_pool <- getPool(path="PATH-TO-YOUR-IB-PROJECTS")


If no additional function for navigation is defined (see section 7.3.3), the project/tasks defined in the item pool will be administered as linear sequence. Hence, you can either change the order of project files / tasks in the object item_pool after the call of getPool(), or provide a specific function navigation (see section 7.3.3).

The configuration is done using a list of attributes and functions, created with the function getConfig().

assessment_config <- getConfig()


Various options that can be defined include the visual orientation and zoom of items, as described in the help:

?ShinyItemBuilder::getConfig




7.3.2 Start and End of Assessments using ShinyItemBuilder

The default configuration to start the assessment that the R/Shiny package ShinyItemBuilder will create a new identifier, when the assessment is loaded the first time from a particular browser. The identifier is stored in the local session storage, so that the same identifier will be used if the test-taker closes and re-opens the page (or reloads the page). Using this identifier, the test-taker will always return the last visited item. If the last item was ended, an empty page will be presented and the function end defined in the configuration will be called.

The function end can be defined in the configuration to implement different authentication workflows.

Multiple Runs: A new identifier is created automatically when the URL is visited the first time (or if the application is started in a local deployment). The identifier is stored either in the session storage (default or sessiontype="sessionstorage") , in the local storage (sessiontype="localstorage") or using cookies (sessiontype="cookie"). As long as the identifier is stored, the started session will be continued.8 After the last item the function end will be called, that is defined in the object assessment_config using the function getConfig():

assessment_config$end=function(session){
    showModal(modalDialog(
      title = "You Answered all Items",
      "Please close the browser / tab.",
      footer = tagList(actionButton("endActionButtonOK", "Restart"))))
  }


This function is called when the last item was shown (i.e., if the function navigation returns -1). The Shiny actionButton("endActionButtonOK", "Restart") allows test-taker to re-start the assessment.

Single Runs: If the function end does not include the action button (i.e., if the footer is an empty tag-list: footer = tagList()))), the test-taker will not be able to start the assessment again, once the last item is reached. Alternatively, the end function can also be overwritten to re-direct to another URL:

assessment_config$end=function(session){
  session$sendCustomMessage("shinyassess_redirect", 
      "https://URL-TO-REDIRECT.SOMEWERE/?QUERYSTRING")
}


Authentication: If the assessment is configured with sessiontype="provided", the object assessment_config created with the function getConfig() can contain a custom login -function:

assessment_config$login=function(session){
    showModal(modalDialog(
    tags$h2('Please Enter a Valid Token and Press "OK".'),
    textInput('queryStringParameter', ''),
    footer=tagList(
      actionButton('submitLoginOK', 'OK')
    )
    ))
  }


This function is shown, if the assessment is not started with a query-string parameter that includes a parameter with the name defined in the config assessment_config$queryStringParameterName (default is token). If the parameter is provided, the function assessment_config$validate is called to verify that the token is valid.



7.3.3 Define Sequencing / Navigation using ShinyItemBuilder

Using ShinyItemBuilder allows to implement different approaches for test assembly and test assembly (see section 7.2.7).

Linear Sequence: If all test-taker should answer the identical CBA ItemBuilder projects/tasks in a similar sequence, ordering the tasks in the object item_pool is sufficient.

In the following example, the demo item pool is reordered, so that the items are administered in the reversed order:

item_pool <- getDemoPool("demo01")
item_pool <- item_pool [c(6,5,4,3,2,1),] 
assessment_config <- getConfig()
shinyApp(assessmentOutput(pool = item_pool,
                          config = assessment_config,
                          overwrite=T), 
         renderAssessment)


Booklets: If multiple sequences are required, a modified function navigation <- function(pool, session, direction="NEXT") can be provided. The function obtains the item pool (as defined above) and a session object.

Possible values for direction are the possible Runtime Commands available in the CBA ItemBuilder (i.e., either NEXT, PREVIOUS or CANCEL, see section 3.12), and the value START. The function is expected to return the index of the next item (starting with 1), corresponding to the row in the item pool object. The function can store and retrieve temporary information using the functions setValueForTestTaker(...) and getValueForTestTaker(...). The example in vignette("booklets") based on demo01 defines two booklets (using items 2,3,6 in booklet 1 and using items 4,5,6 in booklet 2). A random booklet is assigned (sample(unique(booklets$Booklet),1)) and stored for the test-taker.

Adaptive Testing (CAT): A modified function navigation <- function(pool, session, direction="NEXT") can also be used to implement various forms of adaptive testing. The package contains an example (see vignette("cat_with_catR")) how to use the R-package catR (Magis and Raîche 2012; Magis and Barrada 2017) for a simple adaptive test (see Figure 7.1).


[image: Output of an Adaptive Test Created with `ShinyItemBuilder` and `catR`.]

FIGURE 7.1: Output of an Adaptive Test Created with ShinyItemBuilder and catR.






7.3.4 Score Responses in R

CBA ItemBuilder tasks provide a scoring (see chapter 5) that can be evaluated and reused in R.

Retrieve ItemBuilder Scoring: The R package provides a template for the score-function, that can be used to extract information from the CBA ItemBuilder provided ItemScore (see section 7.2.9). Adaptation of this function is necessary if selected responses of the already administered tasks are to be used for test sequencing (e.g., if ShinyItemBuilder is used for adaptive testing). The score-function is called automatically, after the administration of one item is completed.




7.3.5 Feedback in R using Markdown/knitr

As discussed in section 2.9.2, a technical platform for report generation is necessary to provide instant feedback after an assessment is completed. In the ecosystem of R/Shiny, the knitr package provides an easy-to-use approach to include dynamic documents to dynamically generated documents.

The example in vignette("feedback") based on a selection of items provided as demo01 illustrates how instant feedback can be created using markdown and kntir. Figure 7.1 provides another example.



7.3.6 Data Storage and Data Access

The package ShinyItemBuilder illustrates how CBA ItemBuilder items can be used with R/Shiny, ready to use for small-scale studies that can be hosted, for instance, on shinyapps.io. Date are stored in R in a global variable runtime.data, persisted in a folder configured using the argument Datafolder (default value is _mydata):

assessment_config <- getConfig(Datafolder="folderName")


Data are stored for each session identifier in a *.RDS file that can be loaded in R using the function readRDS(). By default, data are only stored in the current instance (i.e., data will be lost if the application will be put into a Sleeping state or the instance is deleted or newly created on shinyapps.io).9

To access data online, the package illustrates how a simple Maintenance interface could look like. If a maintenance password is provided, the keyboard shortcut Ctrl + X (configured as argument to the function getConfig(maintenanceKey=list(key="x", ctrl=T, shift=F, alt=F), ...)) or the argument ?maintenance in the query string (configured as argument to the function getConfig(maintenanceQuery = "maintenance", ...)) opens a shiny dialog page. (see vignette("maintenance")).



Warning: Understanding how files persist in the chosen hosting environment is fundamentally necessary. Storage in local files is done only in the running instance and is lost when, for example, the Shiny application is put into a Sleeping state or is updated. Inconsistencies are expected if multiple instances are used. Before running a concrete data collection, be sure to read the vignette("datastorage").




7.3.7 Side Note: Interactively Inspect Log Events of CBA ItemBuilder Tasks

The R package ShinyItemBuilder can also be used to directly log events collected by a CBA ItemBuilder task live in RStudio.

This is illustrated with the following example:

item_pool <- getDemoPool("demo02")
assessment_config <- getConfig(Verbose = T) 

shinyApp(assessmentOutput(pool = item_pool,
                          config = assessment_config,
                          overwrite=T), 
         renderAssessment)


Note the argument Verbose = T that is provided to the function getConfig. In verbose mode, ShinyItemBuilder will print detailed information to the R output window, while the items can be interacted with in a web browser using shiny.




7.4 Using CBA ItemBuilder Items with TAO (using Portable Custom Interactions)





The repository fastib2pci can be used as a tool to convert CBA ItemBuilder projects/tasks into PCI components that can then be integrated into QTI. Single projects/tasks and linear sequences of projects/tasks are supported. The generated PCI components can be used, for example, to embedd CBA ItemBuilder items into TAO-based assessments.


Tests in QTI-compatible platforms such as TAO are defined as a sequence of QTI items. Each QTI item contains one or more QTI interactions. QTI interactions can be Common Interactions, Inline Interactions, Graphical Interactions, or (Portable) Custom Interactions (PCI). If TAO is used as the assessment platform, then QTI items can be created, managed, and edited directly in TAO. For use cases where assessment content cannot be implemented with QTI interactions, (Portable) Custom Interactions (PCI) can be integrated.10


7.4.1 Prepare CBA ItemBuilder Project Files for fastib2pci-Converter

For item authors without experience in software development or if existing assessment content is already available, the CBA ItemBuilder can be used as authoring tool for Portable Custom Interactions (PCI), for instance, to create Technology-Enhanced Items (see section 2.3) that can be used in TAO. Portable Custom Interactions that can be used in QTI-items can be created using either a single or a linear sequence of multiple CBA ItemBuilder Project Files.

To create a Portable Custom Interactions with CBA ItemBuilder Project Files, the fastib2pci can be used. It allows creating Portable Custom Interactions with either single or multiple Project Files. As a necessary prerequisite, one or multiple Tasks must be defined within each Project Files. If multiple Project Files are used, an alphabetical order is used. The same applies to the order of Tasks, if within one CBA ItemBuilder Project File multiple Tasks are defined.



7.4.2 Generating PCI-Components using fastib2pci-Converter

The converter fastib2pci is provided as a Github project template that contains a so-called CI/CD worker (i.e., Github actions). Using the converter requires an account at github.com. After creating an account and log-in to your profile, navigate to the repository fastib2pci and push the button ‘Use this template’ as shown in Figure 7.2.


[image: Repository [fastib2pci](https://github.com/DIPFtba/fastib2pci) shows the button `Use this template` after log-in to [github.com](https://github.com/).]

FIGURE 7.2: Repository fastib2pci shows the button Use this template after log-in to github.com.




Provide a new project name and make sure to select Include all branches.11 As soon as the project is created, the CI/CD worker included in the template repository fastib2pci will create the PCI components using the example CBA ItemBuilder Project Files included in the folder items. After the worker completed, the PCI components can be downloaded from the repository in the section Releases (or using the following link: https://github.com/{your github account name}/{repository name}/releases).

To use the converter with your own CBA ItemBuilder Project Files, create a new directory (e.g., component_1), upload CBA ItemBuilder Project Files to the new directory, and delete the example directories ‘test_1’ and ‘test_2’. After committing the files, the CI/CD worker will automatically update the PCI components and provide them in the section Releases. Note that you can use a git-client (see section 8.3.2.2) to work with the repository.



Generating PCI-components for using CBA ItemBuilder Project Files in TAO-based assessments is possible without installing a specific software. The packaging of PCI-components is done within the CI/CD worker worker that is provided in the template repository fastib2pci.




7.4.3 Flavors of PCI-Components Created by fastib2pci-Converter

For each sub folder of the directory items/ one *.Tar-file (tarball archive)12 is generated. Accordingly, if you plan to use multiple PCI-components for a particular assessment, only one git-repository is required.

The *.Tar-files generated by the fastib2pci-converter contain different versions of the PCI-components, using the identical CBA ItemBuilder Project Files in the repositories items/-folder. There are two reasons to create different flavors:

IMS PCI vs. TAO PCI: The implementation of PCI support in TAO changed over the last years from a TAO-specific implementation (TAO PCI) towards the standard specification (IMS PCI). Both versions are generated by the fastib2pci-converter.

Generic vs. Specific: CBA ItemBuilder content is embedded using PCI-components using iframes. All resources used in CBA ItemBuilder Project Files are embedded in the generated Specific PCI-components (required to make the Portable). However, since TAO might have, depending on the configuration, a size limitation, the fastib2pci-converter also creates a Generic version that only includes the CBA ItemBuilder runtime in the PCI-component (resulting in very small file sizes of about 150 KB), referring to static GitHub Pages for hosting the actual item content.



To use the Generic PCI-components created by fastib2pci-converter, github pages must be enabled.13


If GitHub Pages are activated in the project (see Figure 7.3), the CI/CD worker worker will automatically prepare the hosting for the item content as required for the Generic PCI-components.


[image: Example repository settings showing activated *GitHub Pages*.]

FIGURE 7.3: Example repository settings showing activated GitHub Pages.






Important note: If GitHub Pages are activated (i.e., if Generic PCI-components are used), the item content is freely accessible using the following URL: https://{your github account name}.github.io/{repository name}/{sub directory name}/


If, for item protection reasons, the content can not be freely accessible, then using the Generic PCI components requires providing a (secured) static hosting of the content in the Branch gh-pages, generated by the fastib2pci-converter. This effort is not required for the Specific PCI components.



7.4.4 Side Note: Archive Assessment Content using GitHub Static Pages

For various reasons, it can sometimes be reasonable to provide assessment content statically (i.e. without data storage). In addition to screenshots, CBA ItemBuilder tasks, for example, can also be displayed as interactive web pages. With the converter fastib2pci this can be easily realized if you have your GitHub Pages activated in your account (either using public repositories or a GitHub Pro plan). See the public GitHub Pages for the template repository fastib2pci as an example: https://dipftba.github.io/fastib2pci/




7.5 Using CBA ItemBuilder Items with the IRTlib-Software





The IRTlib software is a dedicated deployment software for complex assessments based on CBA ItemBuilder items. Test compositions can be configured using a visual flow definition and used in offline and online assessments.



7.5.1 IRTlib-Editor vs. IRTlib-Player

The IRTlib Deployment Software consist of two different parts. An IRTlib-Editor to configure studies, and a IRTlib-Player to run studies. The IRTlib-Player requires a valid configuration of a deployment, that can be created, changed and modified with the IRTlib-Editor.

The IRTlib-Player supports different deployment modes for assessments, either offline (e.g., from USB stick) or online (e.g., stand-alone with a URL pointing to a dedicated server prepared for hosting the software).

The IRTlib-Editor used to configure and define studies can currently be use only offline.14 The identical assessment content (i.e., CBA ItemBuilder Project Files containing one or multiple tasks) can be used for online and offline delivery.



7.5.2 Runtime Requirements (Offline and Online)

An installation of the IRTlib-Editor is not necessary for offline use, because the software (i.e., the IRTlib-Player and -Editor) is prepared to run without installation (currently only under Windows).

Readiness Tool (offline): A simple command-line readiness-tool is provided to check if a (Windows) computer fulfills the requirements to run the IRTlib-Player for offline use. The readiness tool is configured with command-line parameters and, if so configured, also forwards the command-line parameters to the player. This allows the readiness-tool to always be started before the player, or to be called after the player only in the event of an error.

The IRTlib-Player for online deployments is provided as docker image. For preparation and configuration of online deployments, file management of CBA ItemBuilder project files and configuration files the offline IRTlib-Editor can be used.

Requirements (online): Unlike the CBA ItemBuilder runtime itself (see section 7.7) the IRTlib-Player for online deployments has additional browser requirements for online data collection. Online collections are possible in browsers that support the execution of WebAssembly (WASM).15



7.5.3 Study Configuration

Global configurations within the IRTlib-Editor concern the available CBA ItemBuilder Runtimes. Hence, before using the IRTlib-Editor for CBA ItemBuilder deployments it is necessary to add at least one Runtime. Moreover, for each study it needs to be configured, if either Login16 and Password or a access Token will be required.

Deliveries (i.e., studies) can be configured in the IRTlib-Editor. Studies need a unique Name and allow for an additional Label. Additional configurations for Studies include settings regarding the authentication of test-taker, the requested scaling of content, the configuration of a menu for test-administrators and the expected behavior, when a test-taker finishes a session. Finally, the IRTlib-Editor allows to define the Routing between Test Parts.

Each Study needs at least one Test Part, and currently two types of Test Parts are supported: CBA ItemBuilder and SurveyJS.



7.5.4 Configuration of CBA ItemBuilder Test Parts

To prepare a Test Part of type CBA ItemBuilder, the CBA ItemBuilder project files need to be added to the configuration using the IRTlib-Editor. CBA ItemBuilder Project Files (with Tasks and Scope) can be added at different sections of a Test Part configuration.



The basic building blocks for defining test assemblies are always combinations of CBA ItemBuilder Project files, Tasks and Scopes.


After adding a CBA ItemBuilder Project File the Tasks defined in that Project File are available in the IRTlib-Editor. The additional Scope allows to use an identical Task multiple times. The section info allows to add items (i.e, CBA ItemBuilder Project Files with Tasks and Scope) to the following slots:


	Prefix: Items administered in the beginning of a Test Part (e.g., a cover page, an introduction or tutorial etc.)

	Epilog: Items administered at the end of a Test Part (e.g., a thank-you page etc.)

	Timeout: If the Test Part is time restricted, one or multiple items can be added that will be administered, if a Timeout occurs in the Test Part



The main items that should be administered between Prefix and Epilog can be added to the section Items. If the option Routing is not activated, these items are administered in the sequence defined in the view Items. If Routing is activated, the View Routing allows to define the sequence of items (i.e., CBA ItemBuilder Project Files with Tasks and Scope) using the Visual Designer.



7.5.5 Configuration of Item Pools

For the definition of sequences, results of concrete items (i.e., Classes with scoring conditions and Result Texts, see chapter 5) can be accessed directly. For adaptive tests, in which the current item (or the list of current items) is selected using IRT-methods (see section 2.7), the mapping of the scoring defined within the CBA ItemBuilder Project Files and the variable uu (e.g., 00 for no credit, 11 for full credit and 0.50.5 for partial credit), the IRTlib-Editor provides the additional concept of an Item Pool.



7.5.6 Configuration of Codebooks

Each item (i.e., a particular Task in a CBA ItemBuilder Project File administered in a particular Scope) provides a number of result variables (i.e. Classes, see section 1.5.1) as part of the ItemScore, when the presentation ended for a particular task either because of a navigation-related command (see section 3.12.2) or because of a time limit (see section 7.2.8). The Codebook allows to map the values provided by the CBA ItemBuilder scoring into variables with labels and value labels, as required for data sets.

Missing Value Coding: If a response was provided, either the name of the scoring condition (hit/miss) or the Result Text represents the value of the variable. Within the tasks, the defined scoring (see section 5.3.11) is expected to differentiate between Not Reached (NR) and Omitted Response (OR), if no response is provided. Hence, the values provided for classes (i.e., variables) of Tasks (i.e., for one or multiple items) are missing value coded based on the CBA ItemBuilder scoring. However, there are a few processing steps required by the IRTlib-Player to apply the missing value coding completely:


	If a timeout or an abort by the test administrator / interviewer occurs, the classes (i.e., variables) within the current task (i.e., the task in which the test part was aborted or the task that was ended by a timeout) the Not Reached (NR) codes are changed to either Missing due to Abort or Missing due to Timeout.


	In the next step, the remaining tasks are determined that would have been administered if the timeout or the abort would not have happened. The classes (i.e., variables) of these tasks are then also missing-coded as either Missing due to Abort or Missing due to Timeout.


	Finally, all remaining tasks are determined (i.e., the tasks that are neither administered before the timeout or the abort and would have also not been administered if no timeout or abort had occurred). The classes (i.e., variables) for these tasks are missing-coded as Missing by Design.




Taking all three steps together the resulting data set of the obtained item score can be transformed into a regular rectangular data set, with one column for each class (i.e., variable), where the number of classes (i.e., variables and thereby columns) is known in advance as soon as all pairs of CBA ItemBuilder projects files and task names are defined and the CBA ItemBuilder project files are available.



If the scoring definition within the CBA ItemBuilder Tasks is complete and error free (i.e., conditions are mutually exlusive per class, see section 5.3.3) and with missing value coding (i.e., the scoring defines missing responses for each class and differentiates, if required, between Not Reached and Omitted Response), the IRTlib software can provide result data that are ready for raw data archiving.


For test designs with a unit structure (i.e., multiple items within a task), a differentiation between Not Reached (NR) and Omitted Responses (OR) needs to be included in the scoring definition of the CBA ItemBuilder Tasks. The IRTlib software then uses this differentiation to differentiate between normal responses, Missing by Design, Not Reached (NR) / Omitted Response (OR), Missing due to Abort, and Missing due to Timeout even in the case of complex task-flows or test assemblies that may depend on given responses, conditions and skip rules or even so-called pre-load variables (i.e., values assigned in advance to logins or tokens or values provided at the start of an assessment, see section 7.5.3).






7.5.7 Data Collected by the IRTlib-Software

Digitally-based assessments with CBA ItemBuilder Tasks create results data (based on the scoring definition, see chapter 5), raw log events (automatically generated log events), and additional user-defined log events (triggered either in the finite-state machine or in content embedded using ExternalPageFrames).

Raw Data Archives: The data stored by the IRTlib-Player always have the reference to the so-called Session. If a login or token is used as Person Identifier to authenticate test-takers, the raw data of a session are stored in a file {personidentifier.zip}. If there was no login in a particular session (yet), or if the study is configured to use a random identifier, the raw data archive will be named according to this (randon) ID. The raw data archive. is a zip archive that can contain multiple files. The files ItemScore.json and Trace.json contain the item scores and log data provided by the CBA ItemBuilder Tasks in JSON format. The file Log.json gathers additional log data provided by the IRTlib-Player and the file Snapshot.json contains all information required to restore the state of a Task (used, for instance, for crash recovery).

Monitoring Data: After the completion of an individual assessment, summarized status information can also be provided directly by the IRTlib-Player. Using this functionality, it is possible to react to key measures (e.g., particular time measures) already during data collection without the need to process raw data archive containing the log or result data. The status information can either be written to a file (monitoring file) or passed in an online assessment as part of a forwarding URL. Computation of monitoring information is defined in the visual editor.

The monitoring data are created as variables in the visual editor and are stored as list of variable-value pairs. In the JSON file the variable-value pairs are stored in the following form:

{
  "ExampleDateTime": "2021-08-02T10:25:58.6209884+02:00",
  "ExampleInteger": 42,
  "ExampleString": "Any String",
  "ExampleDecimal": 3.1415926
}


Please note that the representation of the values in the JSON format differs slightly depending on the data type.





7.5.8 Integration into Learning Management Systems

If a hosting of the IRTlib software is configured, it can be used as tool in Learning Management Systems (LMS) that support the Learning Tools Interoperability (LTI) interface.




7.6 Using CBA ItemBuilder Items in SCORM Packages (with xAPI)





The repository fastib2scorm can be used as a tool to convert CBA ItemBuilder projects/tasks into SCORM packages that can then be integrated into Learning Management Systems (LMS). Single projects/tasks and linear sequences of projects/tasks are supported. The generated SCORM components can be used, for example, to embedd CBA ItemBuilder items into moodle.


Assessment content embedded into Learning Management Systems (LMS) can become Open Educational Resources. Open standards, such as the Sharable Content Object Reference Model (SCORM) described how content can be packaged into a transferable ZIP-archives, called Package Interchange Format to be used in different LMS that support SCORM.

Flavors of SCORM-Packages created by the fastib2scorm-converter


	SCORM 1.2

	SCORM 2004




7.6.1 Prepare CBA ItemBuilder Project Files for fastib2scorm-Converter

To create a SCORM packages with CBA ItemBuilder Project Files, the fastib2scorm can be used. It allows creating SCORM packages with either single or multiple Project Files. As a necessary prerequisite, one or multiple Tasks must be defined within each Project Files. If multiple Project Files are used, an alphabetical order is used. The same applies to the order of Tasks, if within one CBA ItemBuilder Project File multiple Tasks are defined.



7.6.2 Generating SCORM Packages using fastib2scorm-Converter

The converter fastib2scorm is provided as a Github project template that contains a so-called CI/CD worker (i.e., Github actions, see also 7.4.2). Using the converter requires an account at github.com. After creating an account and log-in to your profile, navigate to the repository fastib2scorm and push the button ‘Use this template’ (see also Figure 7.2 above for the similar approach used for the fastib2pci-converter).



7.6.3 General Data Provided to the LMS

SCORM packages that consist of a single CBA ItemBuilder task or a linear sequence of tasks automatically return the information summarized in Table 7.1 to the Learning Management System (LMS) without further configuration:


	Completion: If all tasks in a SCORM component are administered, the cmi.completion_status is reported as completed, otherwise either incomplete is reported (if any user interaction with the SCORM content were recorded) or not attempted (if the SCORM component was loaded, but no interactions were recorded).


	Recent Task: If a SCORM component is created with multiple CBA ItemBuilder Tasks, the recent Task name is reported as cmi.core.lesson_location (1.1 / 1.2) or cmi.location (2004 2st, 3nd, 4th) . If a SCORM component is resumed, the component is continued with this Task.


	Progress: If multiple CBA ItemBuilder Tasks are combined as SCORM component, the progress (i.e., the number of already completed Tasks) is reported as cmi.progress_measure (2004 2nd, 3rd, 4th).


	Total Time and Session Time: The total time a SCORM component was used (accumulated across multiple visits) is reported as cmi.core.total_time (1.1 / 1.2) or cmi.total_time (2004 2nd, 3rd, 4th). The time of the last session is reported as cmi.session_time (2004 2nd, 3rd, 4th).


	Suspend Data: The snapshot of started CBA ItemBuilder Tasks are required to resume the Tasks. If possible (i.e., if feasible within the restrictions of the SCORM format definition) the (compressed) JSON-Snapshot is provided as cmi.suspend_data. Note that the max size varies across SCROM versions (1.1 / 1.2: 4096 characters; 2004 2nd edition: 4000 characters; 2004 3rd / 4th edition: 64000 characters).





TABLE 7.1: Data Reported by all SCORM Components with CBA ItemBuilder Tasks







	Data Model
	Description
	Versions





	cmi.completion_status
	Completion status, i.e., completed, incomplete, not attempted, unknown
	(all)



	cmi.core.lesson_location
	Recent Task, i.e., the name of the last visited CBA ItemBuilder Project / Task used to resume
	(1.1 / 1.2)



	cmi.location
	(see cmi.core.lesson_location)
	(2004 2st, 3nd, 4th)



	cmi.progress_measure
	Value between 0 (0% and) and 1 (100%) indicating the progress within the component
	(2004 2nd, 3rd, 4th)



	cmi.core.total_time
	Accumulated total time
	(1.1 / 1.2)



	cmi.total_time
	(see cmi.total_time)
	(2004 2nd, 3rd, 4th)



	cmi.session_time
	Time of the last session
	(2004 2nd, 3rd, 4th)



	cmi.suspend_data
	JSON string to restore tasks states
	(all, but varying size limits)



	Not supported yet: cmi.core.exit
	Exit status, i.e., time-out, suspend, logout
	(1.1 / 1.2)



	Not supported yet: cmi.exit
	(see cmi.core.exit)
	(2004 2nd, 3rd, 4th)



	Not supported yet: cmi.core.entry
	First attempt ab-initio or resume
	(1.1 / 1.2)



	Not supported yet: cmi.entry
	(see cmi.core.entry)
	(2004 2nd, 3rd, 4th)







7.6.4 Report Scoring Results Provided by CBA ItemBuilder Tasks to the LMS

The CBA ItemBuilder scoring (see Chapter 5) consists of a list of Classes, each providing one active hit (or miss) at a time, and optionally a string or numeric result (called Result-Text). Additionally, scoring is provided in the form of variables with values.


	CBA ItemBuilder Scoring: Raw results as provided by the CBA ItemBuilder Tasks are converted to the cmi.interactions-structure, defined in the SCORM standard, using the fields. For each class and each variable, a cmi.interactions-entry is created with a unique key (id) and a value (learner_response).



Classes:


	id: {Project-Name}.{TaskName}.{ClassName}



	learner_response: Hitname | ResultText



Variables:17


	id: {Project-Name}.{TaskName}.{VariableName}

	learner_response: Type | VariableValue





7.6.5 Mapping of Scoring Result to Indicate Success

The transmission of results-data from SCORM packages embedded in learning management systems in the form of cmi.interactions is sufficient to make all data available to the LMS for later use. However, it is not sufficient to report the results in a way, that the LMS can understand and feedback to teachers or course administrators. For that purpose, an additional mapping of the raw results to correct responses / incorrect responses is required, so that raw scores, success and credits can be derived.

TODO: We need to define a codebook structure for that purpose.


	Raw Score:

	cmi.core.score.raw

	cmi.core.score.max

	cmi.core.score.min




	Success:

	cmi.success_status

	cmi.core.credit

	cmi.core.lesson_status







TABLE 7.2: Data Reported by SCORM Components With Scoring


	Data Model
	Description
	Versions





	cmi.success_status
	…
	(all)



	…
	…
	…







7.6.6 Trace-Data using xAPI-Statements

Additional behavioral data gathered inside of SCORM package using the CBA ItemBuilder runtime can be stored using xAPI statements. The following statements are provided by default, storing the data provided by the CBA ItemBuilder runtime (see section 7.2.9):


	Traces (Log-Data) : JSON messages informing about log events inside the CBA ItemBuilder Tasks are provided as single xAPI statements, with the data provided in the object part:



{
  "actor": { "mbox": "mailto:user@example.com","name": "User Name" },
  "verb": {  "id": "https://example.com/verbs/logged",  "display": { "en": "logged"  }  },
  "object": {
    "id": "http://example.com/system/events/123456",
    "definition": {
      "name": {
        "en": "CBA ItemBuilder Event Log"
      },
      "description": {
        "en": "Logged a CBA ItemBuilder event"
      }
      "data": "... JSON data provided by the runtime ..."
    }
  },
  "timestamp": "2023-07-25T10:30:00Z"
}



	Scoring Results : JSON messages containing the scoring results of CBA ItemBuilder Tasks are provided as xAPI statements, with the data provided in the result part:



{
  "actor": { "mbox": "mailto:user@example.com","name": "User Name" },
  "verb": {  "id": "https://example.com/verbs/experienced",  "display": { "en": "experienced"  }  },
  "object": {
    "id": "http://example.com/project-file/task",
    "definition": {
      "name": {
        "en": "CBA ItemBuilder Project Name"
      },
      "description": {
        "en": "User Name experienced Project Name / TaskName."
      }
      "result": {
        "extensions": {
          "https://xapi.itembuilder.de/extensions/itemscore": {
            ... ItemScore JSON  ...
          }
        }
      }
    }
  },
  "timestamp": "2023-07-25T10:30:00Z"
}



	Snapshot : JSON messages containing the complete restore data of CBA ItemBuilder Tasks are provided as xAPI statements, with the data provided in the result part:



{
  "actor": { "mbox": "mailto:user@example.com","name": "User Name" },
  "verb": {  "id": "https://example.com/verbs/experienced",  "display": { "en": "experienced"  }  },
  "object": {
    "id": "http://example.com/project-file/task",
    "definition": {
      "name": {
        "en": "CBA ItemBuilder Project Name"
      },
      "description": {
        "en": "User Name experienced Project Name / TaskName."
      }
      "result": {
        "extensions": {
          "https://xapi.itembuilder.de/extensions/snapshot": {
            ... Snapshot JSON  ...
          }
        }
      }
    }
  },
  "timestamp": "2023-07-25T10:30:00Z"
}





7.7 Using CBA ItemBuilder Items in Custom Web Applications (Taskplayer API)



This section briefly describes how software developers can use CBA ItemBuilder content in web applications.



Important note: This section describes how CBA ItemBuilder projects can be embedded into new environments by technically experienced programmers, without using the existing deployment software tools described in this chapter.


The CBA ItemBuilder is the tool for creating individual assessment components. These can be items, instructions, units or entire tests. Typically, several CBA ItemBuilder projects must be used for the application. Each CBA ItemBuilder project file provides one or more entry points called Tasks. For a test section you then need a list of ItemBuilder project files and the corresponding task names to administer them, for instance, in a linear sequence.

CBA ItemBuilder Project Files are zip archives that contain the following components (see also section 8.3.3):


	A: The information required at design time for creating assessment components with the CBA ItemBuilder (i.e., for editing content). The files are only required for opening and modifying the assessment components with the CBA ItemBuilder and the files are not required at runtime (i.e., when using the assessment components to collect data).


	B: Resource files (i.e., images, videos, and audio files) in web-supported formats that are imported using the CBA ItemBuilder to design pages. The file names of resource files are linked in the CBA ItemBuilder to components (i.e., the resource files are required for item editing and at runtime).


	C: Embedded external resources ( i.e., HTML, JavaScript, and CSS files also in web-supported formats) integrated into pages with ExternalPageFrames / iframes are stored inside the zip archive. An HTML file is defined for each ExternalPageFrames / iframes as entry, but more files might be necessary.


	D: A config.json that allows rendering the item content with the CBA ItemBuilder runtime is also stored in the zip archive. Only the config.json file and the two folders with the resources (resources) and the embedded resources (external-resources, that can contain sub-directories) are required for using the assessment components generated with the CBA ItemBuilder.


	E: A file stimulus.json is also part of the CBA ItemBuilder project files that contains JSON-serialized, meta information about the tasks, such as the runtime version (runtimeCompatibilityVersion), the name (itemName) and the preferred size (itemWidth and itemHeight) as well as a list of all defined Tasks (tasks). This file also contains a list of required resource files (resources and externalResources) that allows pre-caching the item before rending.




Taskplayer API: The required Runtime to embed CBA ItemBuilder items into browser-based assessments is provided as a JavaScript file (main.js) and a CSS file (main.css) for each version of the CBA ItemBuilder. Since version 9.0 the interface of the Taskplayer API provided by the JavaScript runtime remained stable, while the internal implementation is changed and updated when new features are implemented in the CBA ItemBuilder. To render an CBA ItemBuilder project of a particular version using the config.json file together with the two folders (resources and external-resources), the same version of the CBA ItemBuilder runtime (i.e., main.js and main.css) is required.

For individual linear sequences, the runtime provides navigation between the tasks directly. If skip rules or adaptive tests are to be implemented, then several runtimes can be combined for the administration of individual tasks or packages of several tasks. This approach also allows implementing a delivery platform that can handle ItemBuilder tasks of different versions.

For programming a CBA ItemBuilder delivery, the following points must be considered and implemented:


	Provision of Static Files: To use CBA ItemBuilder items, the resources (directories resources and external-resources) must be made available (e.g. via static hosting). This can be done via arbitrary URLs, which are communicated via the configuration of the runtime.


	Configuration: Via URL parameters or with a structure cba_runtime_config declared in the global JavaScript scope (i.e. as window.cba_runtime_config) the runtime of the TaskPlayer API can be configured.


	Caching of Snapshots: Browsers can be closed, and assessments should be able to be continued afterward as unchanged as possible. Tasks can also be exited and revisited as part of between-task navigation. For these requirements, the runtime provides the state of a task as a so-called snapshot, which the delivery software is expected to store and to provide for restoring the state of tasks. Therefore, for implementing a custom delivery, it is required to enable persistence of the snapshot data because these snapshots have to be made available to the TaskPlayer API for resuming and restoring tasks.


	Storing of Provided Data: For a data collection with CBA ItemBuilder items using the TaskPlayer API, the following two types of data must be stored: At definable intervals, the TaskPlayer API transmits the collected log data (referred to as trace logs). These data have become the focus of scientific interest for the in-depth investigation of computer-based assessments and should always be stored. The direct results in (i.e., the so-called Item Scores) are provided by the TaskPlayer API when the Tasks are switched and must also be stored. Snapshots, trace data, and item scores are each assigned to a person-identifier and a task so that they can be easily post-processed afterward.




An description of an example implementation of an Execution Environment using the TaskPlayer-API is provided (see EE4Basic in section 10.5) together with a technical documentation for developers (see Reference in section 10.5).








	Alternatively, Visual Studio Code could be used.↩︎


	PORT is the port assigned by shiny and shown in the R console window as follows: Listening on http://127.0.0.1:4723. In this example, 4723 is the PORT.↩︎


	Note: The number of parallel test takers that can use the online assessment simultaneously depends on the hosting of the Shiny application.↩︎


	This is true even if specific browsers (such as the Safe Exam Browser) are used or if CBA ItemBuilder content is integrated with the TaskPlayer API in mobile applications (so-called hybrid apps) or in desktop applications (e.g., using Electron)↩︎


	This is true for all CBA ItemBuilder versions starting with 9.0, see Appendix 10.5 for details.↩︎


	See, for instance, https://create-react-app.dev/docs/supported-browsers-features/.↩︎


	Alternatively, a portable R (e.g., using DesktopDeployR) can be used, or R, the Shiny-App and the browser can be bundled together with a browser as electron app (see, for instance, https://github.com/zarathucorp/shiny-electron-template-m1-2023 for a template).↩︎


	Currently ShinyItemBuilder will not restrict multiple tabs or browser windows accessing the assessment simultaneously.↩︎


	Shiny can be used with more advanced approaches to achieve persistences, see, for instance here.↩︎


	Note that examples and environments such as the QTI-PCI development environment can be helpful for software developers when implementing Portable Custom Interactions.↩︎


	Note that you can select Public or Private for your new project.↩︎


	Note that *.Tar-files are archive file that can be extracted, for instance, using 7-Zip on Windows computers.↩︎


	Currently this option is available for either using public repositories or for GitHub Pro plans.↩︎


	The online version of the IRTlib-Player and Editor as SaaS-solution is under preparation.↩︎


	See the website caniuse for browsers supporting the use of WebAssemblies.↩︎


	These example items for login (IRTLibLoginExample.zip) and exit (IRTLibEndItemExample.zip) can be used to design CBA ItemBuilder tasks for the IRTlib software.↩︎


	Note: Variables are supported starting with CBA ItemBuilder 10.0 and it is expected that variable names and class names are unique.↩︎








  
  
  ch010.xhtml
  
  




8 Assessment Cycle and Workflows



Starting from a concrete diagnostic question (Diagnostic Interest), the development and implementation of computer-based assessments take place in a process that can be illustrated, for example, as an Assessment Cycle (see Figure 8.1).


[image: Illustration of an *Assessment Cycle* that includes *Transfer*.]

FIGURE 8.1: Illustration of an Assessment Cycle that includes Transfer.




The first part of this workflow of computer-based assessments (Diagnostic Interest and Item Development, see also, e.g., Lane, Raymond, and Haladyna 2015) can be broken down into more detailed parts and steps:


	Overall Planing and Preparation (see section 8.1.1) and

	Item Development (see section 8.1.2).



If the intended use of assessment material, for instance, prepared using the CBA ItemBuilder is defined (i.e., if Test Design and Test Assembly are known), the distribution of content to Project Files can be optimized (see section 8.2).

A well-considered distribution of assessment content to individual project files can reduce effort and the risk of errors for the following steps:


	Testing (see section 8.4),

	Test Administration and Data Collection (section 8.5),

	Data Preparation, Reporting and Feedback (see section 8.6), and

	Documentation and Archiving (see section 8.7).



Finally, developed instruments can be shared and made available, for instance, as Open Educational Resources (OER, see section 8.7.4) to be used for further research or in (educational) practice. All different parts of a usual workflow for CBA projects as shown in the Assessment Cycle are described in this chapter.


8.1 Planning of CBA Projects



Assessment projects can face time pressure if necessary steps for planning and preparing have either not been considered or if timetables and milestone plans underestimated requirements for necessary steps. However, time pressure at the end might be less likely if a systematic approach is followed.


8.1.1 Overall Planing and Preparation

Table 8.1 lists the initial steps that should be taken before implementing specific items or tasks for a concrete computer-based assessment.


TABLE 8.1: Workflow for Overall Planing and Preparation


	Overall Planing and Preparation





	Domain Definition and Claims Statements



	Content Specification



	Feature Collection & Requirements



	Software-Tool Selection





Domain Definition and Claims Statements: As the first step of planning and preparing an assessment project, the construct domain to be tested needs to be defined and articulated. After naming and defining the domain to be measured, clear statements of the claims to be made about test-takers knowledge, skills and abilities (KSAs) are required.

Content Specification: The fundamental arguments that should be possible based on an assessment require validity-evidence based on the test content to support the specific interpretations and uses of test scores. This requires a precise content specification (i.e., test content and test format), including specifications on how the KSAs should be measured, which cognitive processes are required, and which item formats and response types are intended.

Feature Collection & Requirements: A systematic collection and documentation of all requirements that exist regarding item presentation and test delivery is suggested before selecting a particular assessment software. Planning for technology-based assessments (see, e.g., International Test Commission and Association of Test Publishers 2022) also includes considering how the use of technology can directly impact the assessment experience.

What if the required functionalities and features of the assessment software and the requirements for test delivery, analyses, and implementation of the computer-based assessment still need to be precisely described? In that case, creating storyboards and implementing minimal examples (as described in the 8.1.2 section) could help.

Software-Tool Selection: Selecting software components for the different parts is possible based on the collected requirements. Various tools might be appropriate for implementing the actual items, the assessment delivery, and the data processing during or after the assessments. If different tools are used, their interplay poses another requirement.

Some aspects for the selection of software components are:


	Features of the software: Items of which type can be implemented using the assessment software (e.g., specific response formats, support of QTI items, items composed by multiple pages etc.)? Is response times measurement required with an accuracy of milliseconds, or is a web-based implementation appropriate?

	License to use the software: How can the software be used for different parts of the assessment project, including the actual data collection, archiving of the instruments, and the dissemination of the developed CBA instruments?

	Interoperability and vendor lock-in: How can the assessment content be used if key stakeholders or project partners change?

	Support and Service Level Agreement: Is technical support for implementing the items and conducting the data collections available, or can a specific agreement be concluded?

	Runtime requirements for offline delivery: Is test delivery without internet access possible and which devices and operating systems are supported? How is it ensured that testing can be carried out without interruption in the face of incorrect entries and that it can be continued after system failures?

	Requirements for online assessments: Bandwidth for group testing, hosting requirements, number of concurrent supported test-takers, redundancy and backup strategy, supported browser versions?

	Software integration: If developers are involved, are they required to implement the complete assessment or only parts (e.g., specific content embedded using ExternalPageFrames, see section 3.14, or the integration of CBA ItemBuilder items using the TaskPlayer API, see section 7.7)?



The personal abilities, resources, and skills of those involved in the project also play a not inconsiderable role in the success of CBA projects. Assessment projects often require competencies from different areas, which is an argument for interdisciplinary teams.



How to do this with the CBA ItemBuilder? Using the CBA ItemBuilder as an authoring tool, item authors (see section 2.11.1) should be enabled to create interactive items, tasks, and assessment components. The underlying argument here is that implementing item ideas and assessment concepts by content experts can create implementations that are superior to more traditional waterfall-like processes (complete description of requirements on paper in advance, followed by implementation by programmers).


Programmers and software developers are only needed in this process if specific extensions in the form of ‘ExternalPageFrame’ content are required or existing HTML5/JavaScript content is to be integrated. Psychometricians (e.g., for scaling and IRT-based item selection), and system administrators (e.g., for hosting online assessments on in-house servers), may be needed to complete a team.



8.1.2 From Idea to Implementation

Once the process model for item creation and software selection has been decided upon, the individual items (in cycles, if necessary) are implemented using the steps shown in Table 8.2.


TABLE 8.2: Workflow for Item Development


	Item Development





	Item Story Boards and Item Writing



	Minimal Examples and Item Computerization



	Item Review and Modification



	Scoring Definition and Scoring Testing



	Item Tryouts (Cog-Labs / Field Testing)



	Item Banking





Story boards: A first step for the creation of more complex computer-based items are storyboards, which illustrate in the form of sketches in which sequence information is to be presented and answer options are to be given. For diagnostically meaningful assessment components, particularly the behavior by which test-takers should provide information about their competence or ability is of particular importance, i.e., which behavior or actions should be used for evidence identification. According to the possibilities of computerized assessments to create interactive, authentic, and complex tasks (cf. Parshall 2002), evidence identification does not have to include the work products exclusively. Still, it can also refer to features of the test-taking process (i.e., process indicators from the log data included in the measurement model).

Minimal Examples: Based on the initial ideas and storyboards, the functionalities and features required for designing the computer-based items can be derived. Typically, developing complex items to the end is not necessary to check whether a specific implementation is possible. Instead, so-called minimal examples, i.e., executable items that exclusively illustrate a particular functionality, can be used.



How to do this with the CBA ItemBuilder? Minimal examples illustrating features of the CBA ItemBuilder are provided via links included in the figure descriptions of this manual (see the links labeled ib, which give access to the individual CBA ItemBuilder projects shown in a particular figure).


Feature-Complete Prototype: Based on the division of content into pages, reused page components, and dialogs, designing a prototype is suggested that is as complete as possible and that at least fully maps navigation within assessment components (i.e., within-unit navigation). This step is not necessary if items are created based on an already developed and tested template.



How to do this with the CBA ItemBuilder? The CBA ItemBuilder supports the re-use of page templates, and existing projects can be adopted and modified as template project (see section 6.8).


Production of Audio files, Images and Videos: For the production of authentic tasks, simulation-based assessment and the contextualization of assessment content, images, audio, and video files are often required (see section 6.2). These must be created as accurately as possible and across tasks, with consistent font sizes, colors, etc., and saved at the required size.

Item Computerization: Combining and merging the visual material of items with potential possibilities for the test-taker’s interactions (i.e., ways to respond to the assessment content) is a creative process that should result in opportunities to collect (valid) evidence about what test-takers know, can do, and understand. In other words, everything should be allowed that helps in making justifiable claims about KSAs.

In order to exploit the potential of computer-based testing for creating tasks that require specific construct-relevant test-taking behavior and that elicit informative evidence, two approaches are possible: A) Collaborative work in interdisciplinary teams (content experts and developers) and an iterative, agile approach for implementing, evaluating, and modifying computer-based tasks. B) Content experts learn and utilize tools to implement computer-based items directly, allowing them to play around with potential implementations and evaluate the impact on task characteristics and the interpretation of work products and test-taking processes.



How to do this with the CBA ItemBuilder? Within the functional scope of the CBA ItemBuilder object model, item authors can design interactive tasks without the help of programmers and optimize them with regard to diagnostic use (approach B). If HTML5/JavaScript content is developed and included as ExternalPageFrame, then feedback and review rounds are recommended (approach A).


Item Review and Modification: Tasks and computer-based implementations of items are usually not created in one step. Instead, assessment components are typically reviewed after an initial draft and revised in review loops to improve and optimize them step by step.



How to do this with the CBA ItemBuilder? The preview function can be used for the review process with CBA ItemBuilder items. For this purpose, the CBA ItemBuilder items may have to be shared between different actors, for which version management techniques (see section 8.3.2) can be used, for example.


Item Tryouts (Cog-Labs / Field Testing): After item development (and testing, see section 8.4), initial empirical testing in cognitive labs (so-called coglabs) or small-scale testing (e.g., with only one school class) is often helpful. Use cases for tryouts are to learn more about the comprehension and usability of new tasks or to (roughly) estimate the required processing time and task difficulty. The test deployment software described in chapter 7, for instance the R/Shiny package ShinyItemBuilder (see section 7.3), can be used to implement a tryout. If necessary, either a screen-recording software can be used to capture the detailed test-taking process, or the tryout can use the CBA ItemBuilder’s feature of collecting replay-complete log data (see section 2.8.3).1

Item Banking: The steps that individual items must go through describe a process from initial design, revisions, and tryouts to scaling and then the operational use of items in an automated or manual test assembly technique. At each stage, persons with different roles, such as item author, item reviewer, psychometrician, test developer, project manager, and others, can change an item’s status in a pre-defined workflow. Possible workflows include the dissemination or archiving of operational items and the long-term storage of items required for follow-up assessments, subsequent cycles, or linking or bridge studies. Moreover, the role of persons and the defined workflow also determine which actions, such as commenting on an item, moving it to the next stage, or bringing an item back to a previous stage (or even discarding an item draft), are possible. Hence, instead of managing items in files (or CBA ItemBuilder project files) and metadata about items in spreadsheets, Item Banking using, for instance, web-based software is possible.




8.2 Distributing Content to Project Files and Tasks



The CBA ItemBuilder’s flexibility for creating assessment components with multiple pages requires planning how the content should be distributed as either one or in multiple Tasks (i.e., entry-points) and Project Files (i.e., zip archives).

Assessments created with the CBA ItemBuilder are composed of Tasks. Tasks are stored in Project Files that share their resources (e.g., images, videos, audio files). All test deployment tools described in chapter 7 can be used to administer either a single Task or a linear sequence of Tasks. While this is sufficient for typical data collections using only one booklet or a set of fixed booklets, adaptive testing (including multi-stage tests) can require to analyze responses live during the assessment to select the appropriate subsequent Task (or multiple Tasks such as stages).



It is suggested to think about the distribution of assessment content into Tasks and Project Files before creating the CBA ItemBuilder projects.


Assessment material will be used as shown in Table 8.3 to collect data with a particular test design (i.e., implementing a particular test assembly strategy), using either manual or automated test assembly (see section 2.7) or booklets. Typically, in a calibration (or field trial) study, the first version of a newly developed test (i.e., a more extensive selection of items implemented, for instance, in CBA ItemBuilder project files) is administered. After investigating item properties (such as item fit, see section 2.5), items are slightly modified, and a selection of items is used to create the test(s) using the test assembly approach of choice.


TABLE 8.3: Steps for Test Design and Assembly


	Test Design and Assembly





	Test Assembly Specification



	Booklet Definition





For many use cases, the following five rules are helpful in deciding how to distribute content to Tasks and how to distribute Tasks to Project Files:


	All content that is always administered together should be in one task. For example, if the items that belong to a shared stimulus form a unit, then each unit should be created as a task.


	Content that might be separated after a revision or item selection should be put into different tasks. This ensures that the CBA ItemBuilder tasks need as little revision as possible after a field test.


	Tasks that refer to the same pages or resources should be placed in one CBA ItemBuilder project file. This avoids repeated copying of content (e.g., images, videos, etc.).


	If information from an item is needed, for instance, for a subsequent filter or jump rule, then the items involved can, in the simplest case, be placed in one task. In this way, the CBA ItemBuilder project files remain as independent as possible from the specific functions of the test delivery software.


	Generally, the tasks (and the CBA ItemBuilder project files) should be as small as possible. This will save time inspecting and previewing the items and allow different persons to work on different parts of the assessment.




A more detailed, albeit complicated, description of the dependencies is summarized below:

Each CBA ItemBuilder Task will always contain at least one page with at least one item. However, multiple pages (and multiple items) within a single Task are possible. In order to guide the possibilities to optimize the distribution of items to Tasks and Tasks to Project Files, but also to discuss dependencies and potential limitations, the following section summarizes what needs to be considered when planning the use of Project Files with multiple Tasks.

Tasks: Tasks are the entry-points the test-deployment software can use (see section 3.6). The primary role of a Task is to define the first page (or the first page and an additional X-Page), shown after an assessment component has been loaded. Only one Task can be used at once. If multiple items should be visible simultaneously, the items need to be on the same page and shown within the identical Task (see section 2.4 for details about test design, item presentation and navigation).

Runtime Commands: Runtime Commands (see section 3.12) can be used to trigger action from the current Task to the test deployment softare, for instance, to request a navigation to the next or the previous Task. Test-taker can trigger a Runtime Commands, when the Runtime Command is attached to components (e.g., Butttons). Runtime Commands can also be triggered either by timers or by any component that can be linked to Events (i.e., Runtime Commands can be triggered as operators in rules defined in the Finite-State Machine, see section 4.4.6).

Pages: Tasks show either single pages (one at a time) or multiple pages simultaneous (either using X-Page layout, see section 3.4.2, as Page Areas, see section 3.5.4 or using dialog pages, see section 3.15). Each Page can be used in a Task multiple times and different Tasks within one Project File can share Pages (i.e., different Tasks can use the same Pages). Links (see section 3.11) and Conditional Links (see section 4.3) can be used to navigate between Pages.

Finite-State Machine: The internal logic layer of the CBA ItemBuilder (i.e., one or multiple Finite-State Machine(s), see section 4.4) is defined for each CBA ItemBuilder Project File (i.e., multiple Tasks) share the identical Finite-State Machine definition(s). However, the Task Initialization syntax (see section 4.5) can be used to prepare the general Finite-State Machine definition for a particular Task.

Variables: In addition to the finite-state machine definition, variables in CBA ItemBuilder Project Files are also globally defined and valid for all Tasks.

Summary: The use of multiple Tasks within one Project Files requires additional considerations to make sure, the Tasks can be used independently. Dependencies can arise based on links (see section 3.11) and conditional links, the Finite-State Machine(s) (see section ) and variables (see section 4.2). If information or results within parts of an assessment needs to be shared, for instance, using Variables provided by the Finite-State Machine, these assessment components must be implemented with one Tasks (see, for instance, the examples provided in section 6.4.2).

Assessment content (i.e., items, units or clusters) distributed in booklet designs, for instance, used in balanced (incomplete) block designs, must be distributed into different Tasks to enable an test deployment software to assemble the tests as required. Similarly, for item-level adaptive testing or unit-level adaptive testing, the entities that are selected adaptively from an Item Pool must be implemented in separate Tasks.

Finally, if identical resources are used in different Tasks (for instance, audio and video files), the Tasks should be implemented in one Project File to reduce redundant files that need to be deployed (and maintained).


[image: Example Illustrating the Distribution of Items to Tasks ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/UseOfTasksExamples/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/UseOfTasksExamples.zip)).]

FIGURE 8.2: Example Illustrating the Distribution of Items to Tasks (html|ib).






8.3 IT-Management of CBA Projects



Assessment projects are often not created by one person alone. If a complete computer-based instrument is developed, content experts, psychometricians, and computer experts are involved. In research contexts, practical implementation of assessment components is often supported or even delegated to student assistants. Besides, when complex assessment software, such as the CBA ItemBuilder, is utilized, user-support may be involved. Additional content experts may be asked, for instance, to review the developed items or tasks. And when data collection takes place in the context of more extensive empirical studies, professional survey institutes or data collection agencies are sometimes involved and contribute to the overall success based on their diverse experience. This large number of participants and the many individual decisions at the content level and the technical implementation of computer-based assessments quickly become quite complex. For this reason, it is recommended to use project management software whenever possible, as briefly described in the following section.


8.3.1 Use of Project Management Software

First of all, personalized user accounts are needed to use project management software for preparing computer-based assessments in teams or groups. The user accounts might be organized using groups with different roles and permissions. Personal accounts that are not shared between users are prerequisites for efficiently dividing tasks between people and assigning changes to specific users.

To distinguish and structure different phases of creating, testing, piloting, and delivering computer-based assessments, project management tools provide the concept of versions or milestones. The actual work steps are then divided into parts (issues or tasks) and managed in an issue tracker. Each topic or ticket can then be assigned to a user and processed by them individually or assigned to other users for work sharing. Observers can be registered, informed about the progress of the processing of a task. Typically, issues or tasks can be structured hierarchically and combined into superordinate work packages. Project management software can be used to process tasks using well-defined workflows (e.g., tickets of a particular category can be assigned to one of the states ‘new’, ‘in progress’, ‘review’, ‘feedback’, ‘solved’ and ‘closed’). Each ticket is typically dedicated to one separate topic, and the individual tickets can be assigned to milestones or versions. In that case, the progress within the issue tracker can be automatically used to create a roadmap that shows which work steps still need to be completed before the next milestone is reached. Finally, project management tools also provide assistance for knowledge management, for example, by providing Wiki pages or additional storage for documents or files.

Open-source tools that can be hosted on your own servers are, for instance, Redmine (Lesyuk 2013; Pavic 2016), OpenProject or Gitlab (Hethey 2013; Baarsen 2014). If the assessment content does not require special protection, public cloud solutions such as Github can also be used (Tsitoara 2020).



8.3.2 Use of Version Control Software

First, the answer to the obvious question: Why is version control helpful for developing computer-based assessments? The explanation refers to the nature of computer-based assessments. Computer-based assessments are created using different software tools. A deployment software (see chapter 7) is used, for instance, together with a Web Browser or a browser component, to show the assessment to test-takers or participants. Moreover, the test content is either created with an authoring software for the test content (such as the CBA ItemBuilder) or is specifically programmed (i.e., implemented with a particular programming language). Altogether, all components together create the computer-based assessment, typically stored in multiple files. Accordingly, a tool that keeps track of all files and identifies differences between files and folders is useful for preparing computer-based assessments. Techniques that originated in software development has proven useful for managing and creating assessments. Version control software allows one or more users to managage and document the status of a set of files (referred to as a repository) and make changes traceable at the level of individual files. Moreover, a verbal description for changes in files is documented using so-called commit-messages.

Since item authors and users of the CBA ItemBuilder may not be familiar with the idea and concrete implementation of version management software, we describe two popular systems in more detail below. However, version control software is a also a key component in the context of Open Science and Reproducible Research (Christensen, Freese, and Miguel 2019). The development environment for R (RStudio) for example comes with Git integration (Gandrud 2020).


8.3.2.1 SVN / Subversion

Often, project management software can be configured already to support the creation of repositories for version management. A project can then be assigned one or more repositories, each of which supports a specific version management technique. The use of two such methods will be described in some detail: Subversion (SVN) and Git.

Overview: Subversion (SVN) is less complex than GIT, which is why we describe this method first. Version management generally means that all files and documents belonging to a project are stored in a common repository. In the context of SVN, this repository is always on a server, i.e., usually accessible via a network. Only selected users have access to the repository. If SVN is used in combination with a project management tool, all registered users with the appropriate permission can access the repository. Every file is stored in the central repository in all created versions. Files can be added to the SVN repository using the commit operation. Check-out or update transfers or updates the files from the central repository to a local working copy (see Figure 8.3).


[image: SVN: Repository and Working Copies [@MasonPragmaticversioncontrol2006].]

FIGURE 8.3: SVN: Repository and Working Copies (Mason 2006).




All users of an SVN repository work with local copies and can adjust, modify, delete, and add new files (or folders) in the working copy of the repository. After completing a particular step (e.g., after changing the assessment according to a specific ticket from the issue tracker), the changes are submitted collectively to the repository (i.e., checked-in with the help of a commit command). For that purpose, the individual changes are described in a commit message so that it is traceable which changes were checked-in. Suppose the changes are related to a specific ticket. In that case, the ticket number can be specified in the Commit message, for example, to document the changes in a traceable manner.

Repository URL: A repository URL identifies SVN repositories. If a public domain is used, they are thus globally unique. For example, the repository URL could look like this: https://{example-domain.org}/svn/{project-title} If the version management is integrated into a project management software, then the repository URL can usually also be retrieved there.

Revision: To manage the different versions, SVN uses the concept of revisions. A repository is always in a concrete revision (starting with zero). Each commit, i.e. all changes to one or more files that are submitted at the same time, increases the revision number by one. The SVN repository stores the complete history of changes, i.e. for each file its content can be exactly determined (and if necessary also restored) to a specific revision. If you know the repository URL of an SVN and a specific revision number, then the content is also uniquely referenced.

Requirements: Many project management tools allow you to view a repository online in the browser and, for example, browse through revisions and, if necessary, follow the links to the issue tracker. However, client software is required to work with an SVN repository locally.



To use an SVN repository, client software is required.


Different software tools for the different operating systems can be used to work with SVN repositories. For Windows, for example, TortoiseSVN is quite widespread, a free edition of an SVN software for MacOS offers, for example, SmartSVN.

Check-out: After installing an SVN client (e.g., TortoiseSVN), a working copy can be created locally for an existing repository. Even for a repository that is empty until then (i.e., revision 0), working with an SVN starts with a first check-out. The first check-out will create the working copy locally and connects the local folder to the SVN repository. If the repository is already filled with files and folders (i.e., in a revision greater than zero), then all files are downloaded and cached locally during the check-out. As soon as the check-out is completed (at a particular revision), it will be possible to work, modify, and, if necessary, even execute files in the working copy.



The working copy of an SVN repository is stored in a local directory.


Checking out an SVN repository works the same way if there are already files in the repository.

Commit: The local working copy of an SVN repository can be worked within the same way as any other directory. After an intermediate (completed) state is reached, the files can be committed to the repository via the Commit command. For this purpose, the SVN client displays the files that have been changed. The selection to be transferred can be made and described with a commit-message. Afterward, the changed files are transferred over the network, and the revision number of the SVN repository increases by one. Newly inserted or files that were not yet under version control must be added to the repository with Add.



After committing changes to an (SVN) repository, it is possible to track the history of changes without renaming the files. Since CBA ItemBuilder Project Files must not be renamed (see section 3.2.1), a version control system is recommended.


Save changes (for instance, in the CBA ItemBuilder) before committing files.

Update: As soon as more than two working copies are used (e.g., because several people are involved in the preparation of a computer-based assessment), the current status of a working copy may be out of date. For SVN repositories, this means, in the simplest case, that the current revision of the working copy is smaller than the most recent revision on the server (in the repository). If no files have been changed in the outdated working copy, a simple update can be used to update the working copy.

Check for Modifications: The question of whether files or directories in a local working copy have changed, been added, or deleted can be easily checked with the help of SVN. For this purpose, the function Check for Modifications is available, with the help of which a comparison of the working copy can be displayed with its current revision. This function can also be used to check whether an existing working copy still contains modified files that are not yet under version control.

Conflicts: As long as parallel changes in the SVN repository always affect different files, Commit and Update allow all users of the SVN repository to edit files in parallel and to share them using the repository. However, if two users make parallel changes to one or multiple identical files, so-called conflicts occurs. Conflicts can be related to files (file conflict) or to the directory tree (tree conflicts). Conflicts occur when executing the update command. If user A tries to commit a file that was changed and committed already by a different user B, SVN requests to update the working copy for user A if he or she tries to commit changes. Since the SVN repository is agnostic against its content, conflicts need to be resolved by users. With existing conflicts, no commits are possible. A graphical user interface (or the explorer integration of TortoiseSVN using the context menu) is of great value for resolving conflicts.

Advanced Features: A complete introduction to all features, options, and possibilities of version management with SVN would go beyond this book’s scope. Therefore, only the keywords for selected advanced features will be mentioned and briefly explained in the following:


	Merging: SVN attempts to combine changes in the repository with local changes that have not yet been committed when updating. This process is called merging. If this does not succeed, a conflict occurs.


	Ignored Files or Folders: Files or directories that should not be part of the repository but are located within the working copy’s directory can be excluded from the SVN. For instance, this function is useful if an assessment software that is part f the SVN, result data are written into a subdirectory, and test possible test data should be excluded from the repository.


	Diff: For files in text format (i.e., explicit text documents, but also files with program syntax and files in CSV, DAT, INI, XML, JSON, YAML, and similar formats), the difference from a previous version can be easily displayed directly in SVN. The display of differences (diff) is beneficial, especially when the commit-message is not meaningful. SVN client tools (such as TortoiseSVN) create diffs for other file formats. Unfortunately, the simple visualization of differences of non-text based file formats (i.e., images, but also ZIP archives and CBA ItemBuilder project files) is often not possible.


	Revert: In order to restore a previous state of the SVN repository, the revert function can be used to restore an earlier revision of the files and folders of the repository.




Version management using SVN can also use tags and branches, and has a concept for locking of files (see for more details, for instance, Mason 2006).

Summary: Version control allows to prepare and develop computer-based assessment using multiple files in repositories. The critical benefit of using version control compared to other file sharing approaches (e.g., cloud storage) is that modification of files are documented (using commit messages) and that conflicts (i.e., modification of identical part of the repository by multiple users) are detected (and infrastructure to handle conflicts is provided). Moreover, the revision number (of SVN repositories) can be used to exactly define the version of all2 files used for deployment of a computer-based assessment (i.e., for a particular data collection).



8.3.2.2 GIT

As a more modern alternative to SVN, the basics of version management with Git is now briefly described.

Overview: Git, unlike SVN, is a distributed version management system. This allow to use Git to manage different versions before pushing changes over a network to a remote repository. This two-step process of commits adds some complexities compared to SVN. However, it allows using Git (i.e., to perform almost all operations) locally.


[image: GIT: Remote Repository and Local Repositories.]

FIGURE 8.4: GIT: Remote Repository and Local Repositories.




Repository URL: For GIT, the remote repository is addressed via a URL. How the URL looks exactly depends on the way of communication with the server. Possible protocols are https and ssh.

Commit Hash: Instead of an incremental revision number (that is used by SVN), each commit in git is identified by an SH1 hash. To identify a commit, the hash shortened from 40 characters to 6-8 characters is often displayed in the git history. Instead of taking the largest revision number, git uses a HEAD as a named pointer to a specific commit, representing the current commit (of a given branch).

Requirements: Various cloud services (e.g., github) and project management tools offer the possibility of creating git repositories and viewing them in the browser. Files can often also be edited or uploaded in the browser and changed directly in the repository via commit.



To use git, client software is required.


Git clients for all platforms can be downloaded from https://git-scm.com). Git clients are directly integrated in a number of tools (e.g., RStudio) and there are graphical tools for git (e.g. GitHub Desktop, SourceTree, and many more) as well as a Windows Explorer integration (TortoiseGit).

A full introduction to git is not necessary for organizing assessment projects and is beyond the scope of this chapter (see, e.g., Tsitoara 2020). In the following, only the basic steps necessary to use git without branches to manage files will be described.

Clone: Before working with files in a local working copy of a git repository, a copy of the repository is required. This can be created for empty and already used repositories via the Clone command. Compared to SVN (where checkout was used for this step), git uses clone to download not only the current commit (HEAD) but also all previous versions of files and all changes in the local repository.

Staged Files: Files within the working copy are, analogous to SVN, not automatically part of the repository. For that they have to be added with Add. Git then differentiates between the states for files shown in Figure 8.5.


[image: Lifeciycle of file satus in git.]

FIGURE 8.5: Lifeciycle of file satus in git.




New files are initially ignored by git, i.e. their contents are untracked. When a file is added, git marks it as staged. A snapshot of the staged files can be created in a git repository via commit. After that the state of the compressed files is umodified until they are edited or changed. Then they are marked as modified. Before edited files with the status modified can become unmodified files again via Commit, they undergo the status of staged files again. Unmodified files can be removed from the repository (i.e., marked as untracked).

Commit: Tracked files that have been modified or added (i.e. files in the staged status, see figure 8.5) can be commented. Graphical tools for git often show the files in staged state or allow to stage all files that have been modified by a simple selection.



After committing changes to a git repository, it is possible to track the history of changes without renaming the files. Different versions of files stored in git repositories can be be used locally.


Analogous to SVN, a commit message is required for each commit, which is then used in the git history to describe the changes. The snapshot of the files from the working copy created with the help of a commit is marked with a hash at git and stored in the local repository.

Push: After committing files the additional push command is required to transfer the commit, which is made on a local branch of the git repository to a remote repository (see Figure 8.4).

Fetch: When multiple users push to a git repository, commits made by another user can be retrieved with Fetch. This makes the repository aware of changes, but Fetch does not yet integrate them into the local working copy.

Pull: Only with the command Pull will changes pushed to the repository by other users be downloaded and copied to the local working copy. If conflicts occur, these must be resolved and solved via a merge commit. Git provides the options use ours and use theirs for this.

Additional Features: The git tool, popular in software development, goes far beyond the features and functionality needed to manage (binary) assessment components in the form of CBA ItemBuilder Project Files.


	Tagging: Since each commit is only marked with a hash, this is not well suited for naming a specific version (e.g. the tested final version of an assessment). For this purpose, the option of tagging can be used in git, where a concrete state of a repository is named with a (readable) label (e.g. v1.0).


	Branches: Git has a sophisticated concept for Branches, i.e. for the division into several areas, in which files with the same name can have a different status. For example, when changes are made by different users at the same time, git automatically creates Branches. Branches can also be used to test and develop changes in a protected section, while the main section remains usable. Often, Branches are used systematically with git, for instance, whenever a new feature is to be developed and tested. A popular strategy for this approach is git flow.


	Revert and Reset: Git provides several ways to access previous commits in a repository. Especially when several users work in a common git repository, it is necessary to choose carefully here. In order to track the history of CBA ItemBuidler Project Files and to revert to a previous version if necessary, it is often sufficient to display the git history in the browser if the changes were committed to the central repository via `push’. Project Files in earlier versions can then be downloaded and reused if changes are to be discarded.


	Similar to SVN, git can also ignore individual files or files of a certain type or in a certain directory via the .gitignore file.




Summary: Git is a complex and powerful version control system whose basic features can also be used to manage assessment projects. It is superior to SVN for this task if the versions are not stored in a central repository and are to be managed locally even without a network connection.




8.3.3 Working with Project Files as ZIP Archives



CBA ItemBuilder Project Files contain information that can be read manually or automatically from ZIP archives. The ZIP archive is not changed in the process.


Extract CBA ItemBuilder Version: Each CBA ItemBuilder file contains a file {Project-Name}.json. In this JSON file, which can be read with a text editor, the supported version of the CBA ItemBuilder (runtimeCompatibilityVersion) is directly in the first line.

Extract Scoring Information: Suppose many CBA ItemBuilder files are to be tested automatically and integrated into delivery software. In that case, it is a good idea to automatically check the transfer of result data (i.e., the scoring). For this purpose, the scoring can be read out automatically from the JSON file included in the CBA ItemBuilder project files.3

Reading Metadata: CBA ItemBuilder Project Files contain metadata for describing the content (see section 6.3.4). Metadata can be found in the file metadata.xml. This XML-file following the Dublin Core specification can be extracted from the ZIP archives.


TABLE 8.4: Content of CBA ItemBuilder Project Files required at Runtime


	Folder/File
	Description





	stimulus.json
	Metadata and information about the tasks



	config.json
	Runtime definition of the tasks



	resources/
	Resource files required for the task



	external-resources/
	External resources required for the task





Runtime Code: The CBA ItemBuilder Project Files fulfill two functions. They allow modifying, editing, and previewing of items using the CBA ItemBuilder desktop program. In addition, they can be used with existing deployment software (see, for example, section 7.5) or by programmers using the TaskPlayer API (see section 7.7) to execute assessments. Files and directories required at runtime are listed in Table 8.4. Files and directories required for editing with the CBA ItemBuilder are summarized in Table 8.5.


TABLE 8.5: Content of CBA ItemBuilder Project Files required at Design-Time






	Folder/File
	Description





	metadata.xml
	Metadata defined in the Project File (see section 6.3.4)



	internal.json
	Internal project information used by the CBA ItemBuilder



	global_1_1.xlf
	XML file containing texts for translation in XLIF-format



	global.cbavaluemap
	XML file containing the definition of Value Maps



	global.cbaitemscore
	Scoring definition (with reference to dsl-file in folder scoringResources/



	scoringResources/
	Folder with dsl-files containing Scoring Conditions



	global.cbavariables
	XML file containing the definition of Variables



	global.cbalayoutsettings
	XML file containing the layout definition for Tasks



	conditionFiles/
	Folder with dsl-files containing Conditional Link Conditions



	global.emfstatemachine
	XML file containing the State definitions



	statemachineFiles/
	Folder with dsl-files containing Finite-State Machine syntax



	{page}.cbaml/.cbaml_diagram
	Page definition edited with the CBA ItemBuilder for each {page}



	project.properties
	Global properties of the Project File



	.project
	(Can be ignored.)







Editing Project Files outside of the CBA ItemBuiler as ZIP archives can easily destroy the files. Make changes only to files in the directories resources and external-resources and make backup copies in any case, or use version management (see section 8.3.2).


Replace Resource Files: Images, videos and audio files added to CBA ItemBuilder Project Files via the Resource Browser (see section 3.10.1) are included in the ZIP archives in the sub-directory resources. If the file names (incl. upper and lower case) and the file formats (incl. the file extension) remain identical, resource files can be exchanged, modified, and updated even without the CBA ItemBuilder in the ZIP archives. The resolution (pixel width times height) for image and video files should remain the same to guarantee that the resources are appropriately rendered during runtime.4

Add ExternalPageFrame Resources: If in CBA ItemBuilder Project Files content is inserted as ExternalPageFrame, then the files are included unchanged in the directory external-resources of the ZIP archive. Content can be added to ZIP archives (i.e., CBA ItemBuilder Project Files) using the Embedded HTLM Explorer (see section 3.14.2). As long as the Page Address (see Figure 3.151), i.e., the file which is directly included by a component of type ExternalPageFrame remains identical, the external resources in the directory external-resources can also be updated, added or inserted directly in the ZIP archive.

Edit Value Maps: Defining complex Value Maps using the editor provided by the CBA ItemBuilder (see section 4.2.4) can be cumbersome. The definition of Value Maps is stored in the file global.cbavaluemap inside of the CBA ItemBuilder Project Files. The following XML shows the content of the file global.cbavaluemap used for the example item shown in Figure 4.14 (see section 4.2.4).

<?xml version="1.0" encoding="UTF-8"?>
<valuemap:ValueMapper xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xmlns:valuemap="http://valuemap.softcon.de" version="VERSION_01_01">
  <valueMaps xsi:type="valuemap:DiscreteValueMap" name="M_Example">
    <entries guard="1" text="Red" image="1.fw.png" 
                       audio="red.mp3" video="red.mp4"/>
    <entries guard="2" text="Red-Yellow" image="2.fw.png" 
                       audio="red-yellow.mp3" video="original.ogv"/>
    <entries guard="3" text="Green" image="3.fw.png" 
                       audio="green.mp3" video="green.mp4"/>
    <entries guard="4" text="Yellow" image="4.fw.png" 
                       audio="yellow.mp3" video="yellow.mp4"/>
  </valueMaps>
</valuemap:ValueMapper>


As long as the structure of the XML file remains valid and all resources exist (i.e., images, audio and video files mentioned in the XML attributes are included in the Project File), the file global.cbavaluemap can be extracted from the ZIP archive, edited in a text editor (or XML editor) and copied in the ZIP archive again. To make sure the CBA ItemBuilder Project File remains valid, open the file in the CBA ItemBuilder and preview all Tasks after changing the file global.cbavaluemap.



8.3.4 Use of Continuous Integration/Continuous Delivery

Continuous Integration (CI) and Continuous Delivery (CD) refers to techniques developed in software engineering, for automatically updating software environments enforcing automation in building, testing and the deployment of applications. CI/CD is organized in so-called Pipelines, which are code scripts executed based on triggers, such as Push commands in git repositories (see section 8.3.2.2).

Content created as Project Files with the CBA ItemBuilder can be used together with the TaskPlayer API (see section 7.7) in CI/CD-pipelines. The converter described for the integration of CBA ItemBuilder items as PCI components into TAO (see section 7.4) is based on a Github workflow. The pipeline that is shared as a Github template project (see the project fastib2pci) is configured to automatically build the PCI components using CBA ItemBuilder Project Files committed to the corresponding git repository.




8.4 Testing CBA Projects



A downside of the many advantages of computer-based assessments (see section 2.1 is that the more interactive (and innovative) assessment items are, the more sensitive the created content is to errors and potential glitches. Potential issues that require (sometimes) intensive testing can be functional (e.g., a missing NEXT_TASK command, see section 3.12.1), or affect only the layout and presentation of tasks (see section 6.8.5 for tips).

Moreover, since different software components and multiple steps are usually involved in generating assessment content, finding errors and testing assessment projects can be complex, requiring a systematic approach. The most crucial part of implementing CBA assessment projects is understanding and developing a notion of what needs to be tested and when tests may need to be repeated if specific changes have been made to a test delivery or the components used.


TABLE 8.6: Steps for Testing


	Testing





	Cross-Browser Testing (when required)



	Component Testing / Scoring Testing



	Integration Testing / Data Storage Testing






8.4.1 Testing Cross-Browser Compatibility

The items created with the CBA ItemBuilder are displayed in the browser with the help of a runtime (see TaskPlayer API in section 7.7) and, if necessary, other additional software components of the delivery software. In the current version, the CBA ItemBuilder runtime is implemented in JavaScript based on the React framework and tested with the CBA ItemBuilder in the current browsers at the time of release. However, additional functionality provided by the used browser or the used browser component is always necessary to display the items. Browsers are subject to continuous development and change, and several differences exist between browsers on devices with different operating systems.

The dedicated testing of CBA ItemBuilder content in different browsers is necessary if A) browsers are used which had a low penetration at the time of the release of the CBA ItemBuilder version (e.g., browsers on specific devices like SmartTVs) or were still unknown (e.g., newer browser versions after the release of a specific CBA ItemBuilder version/runtime). Cross-browser testing is B) also necessary if any content is included via the ExternalPageFrame interface that was either implemented specifically for an assessment or has not yet been tested in the intended browsers.

Running Preview in Specific Browser: The assessment figures created with the CBA ItemBuilder can be viewed in the browser directly from the authoring tool (see section 1.4). By default, the system browser is used, i.e., the browser registered Web browser on the local computer used to run the CBA ItemBuilder. After a preview has been started, the URL opened in the default browser can be opened in other browsers if they are installed locally on the computer. In this way, assessment content can be viewed and checked in different browsers.5

Using External Tools for Cross-Browser Testing: Since CBA ItemBuilder created assessment components are generated as HTML output for integration into test deliveries, tools for testing websites in different browsers can also be used to verify cross-browser compatibility.

Key technologies for automating website testing such as Selenium or PlayWright, and the various solutions for automated website testing on various devices can be used to test cross-browser comparability. Cross-browser testing is suggested in particular when external components are embedded into CBA ItemBuilder project files using the ExternalPageFrame-component (see sections 3.14 and 4.6.2), of if CSS adaptations are used (see section 6.3.3).



8.4.2 Testing Assessments Using Synthetic Data

For the further test steps shown in table 8.6, it has proven helpful to consider the structure of assessment projects. Assessments generally consist of many individual components (items and units, as well as instructional components like tutorials). The Components are administered either in a fixed sequence (see Fixed Form Testing in section 2.7.1), in different booklets or rotations (see section 2.7.2) or in individualized sequences (see Multi-Stage Testing in section 2.7.3 and Computerized-Adaptive Testing in section 2.7.4).

An essential first step is Component Testing to ensure that test cases systematically cover the specific conditions of all components. This means that the individual components (i.e., items or units, instruction pages, tutorials, etc.) are tested separately.

Component Testing / Scoring Testing: Component testing regarding the behavior of items can be combined with scoring testing of individual items. Depending on the complexity of the evidence identification rules used to define the scoring, scoring testing might be trivial (for instance, to make sure that the selection of radio buttons is appropriately captured). However, it can get more complex if, for instance, multiple pages are used and the missing-value coding is included in the scoring definition.



How to do this with the CBA ItemBuilder? The item authors can best test CBA ItemBuilder tasks in scoring and functioning if they have also defined the rules for evidence identification and evaluating responses and concrete test-taker behavior. For this reason, the CBA ItemBuilder provides a possibility with the Scoring-Debug Window (see, for instance, section 5.1), how component tests of single Tasks can be executed directly from the preview and repeated several times by Reload of the preview. If necessary, the scoring can also be checked by persons who have not dealt with the CBA ItemBuilder in depth (see the Quick Start: Explore Scoring in section 1.5).


To test the scoring, the individual assessment components must first be identified. For each item, all the different correct and incorrect solutions should be systematically entered, produced, and checked. If several items or ratings are contained within a component, it is recommended to check to what extent they are independent. If the defined scoring rules reveal dependencies, then the scoring check of the individual components should also consider all combinations, as far as possible, with reasonable total effort.



How to do this with the CBA ItemBuilder? Component Testing of CBA ItemBuilder content becomes more straightforward if multiple small tasks are created and stored in (independent) Project Files (see section 8.2).


For organizing the testing of CBA projects, it is recommended to use a version control system and to organize the process using an issue tracker (see section 8.3).

Integration Testing / Data Storage Testing: Data storage (typically for result data) uses the single assessment components integrated into the test deployment software. A systematic approach is based on Click Pattern (also called Mock Cases), meaning pre-defined responses to all items in a test or booklet. To verify the entered responses (synthetic data) with the results collected by the assessment software, the data post-processing (see section 8.6) should be in place (end-to-end testing).

For pragmatic reasons, the use of screen recording software (e.g., OBS Studio) to check the scoring may also prove helpful. If the screen is continuously recorded during the scoring check, then possible input errors can be identified more quickly in the event of inconsistencies.

Missing or skipped responses, time constraints, timeouts, and special test events, such as test leader interventions or test terminations at defined points, should be included in the mock cases so that missing coding can be checked later.



How to do this with the CBA ItemBuilder? In the current version of the CBA ItemBuilder, Classes are used within the Project Files to define result variables whose values are either categorical (hit or miss Scoring Conditions) or non-categorical (when the result-text()-operator is used). In addition, the delivery software can use a codebook to translate them into variables (with customized variable names and variable labels) and, for categorical variables, with (newly defined) variable values (e.g., of type integer) and with additional value labels.


Please note that if item selection is also dependent on random processes in the context of adaptive testing, for instance, as part of exposure control, then the algorithms for item selection must be tested as an additional step. Testing adaptive algorithms is done, for instance, in pre-operational simulation studies, if the algorithms used for operational testing are accessible for simulation studies as well.

Verification of Log Events: As described in the section 2.8, the theory-driven collection of log data is increasingly important. Various possible process indicators can be extracted from log data, providing information about emotional and cognitive processes during test and item processing. Log data thus provide the basis for a possible improvement in the interpretation of test scores and, if use is planned, should be reviewed before an assessment is conducted. When verifying and checking log data, special attention should be paid to the fact that log events depend on their context (Contextual Dependency of Log Events). Therefor, verifying and checking log events may require a reconstruction of the context from previous log events.



How to do this with the CBA ItemBuilder? Inspection and verification of log events is possible in the state of Component Tests within the CBA ItemBuilder Preview using the build-in Trace-Debug Window (see section 1.6). Moreover, the data post-processing workflows (see section 8.6 available for the different deployment approaches also allow inspecting the log data as part of the testing procedures of CBA projects.





8.5 Running Assessments

After the preparation and testing of assessment projects, the actual data collection (fieldwork) takes place. The data collection can be released with a specific revision or tagged version status if a software tool is used to version the assessment content (see section 8.3.2). Suppose this revision number or version information is also stored in the survey data. In that case, it can be traced which exact version was used for a test-taker, even in the case of longer data collection phases and possible adjustments during the field time.


TABLE 8.7: Steps for Test Administration / Data Collection


	Test Administration / Data Collection





	User Management / Authentication



	Test Deployment





The steps summarized in table 8.7 start with User Management / Authentication. If assessments are embedded into other (digital) environments or (longitudinal) designs, information might be linked to the identifiers used for test-takers authentication (e.g., as log-in or token). These so-called pre-load variables need to be handled by the test deployment software (see, for instance, section 7.5). Special focus is also on identifier used for persons (user management / authentication), as these identifiers might need to be replaced during data post-processing.

While the assessment is running typical using one or multiple (mixed-mode) delivery modes described in section 7.2.1, intermediate data might be available to start data processing while the data collection is running (for instance, by providing the Raw Data Archives of already completed assessments incrementally). If CBA is integrated into a computerized survey with even more components (e.g., questionnaires or interviews), then selected data from the assessment can also be taken over directly for field monitoring (e.g., in the form of a monitoring file, see section 7.5.7).



8.6 Data Processing after Assessments

The data preparation process should be already tested as part of the Integration Testing (see section 8.4.2). For this purpose, the required routines (e.g., R scripts) should already have been created prior to data collection and tested with the help of synthetic data. Testing is complete if it is verified that the central information can be derived from completing tasks required for identifying evidence about the test-taker’s knowledge, skills, and abilities.


TABLE 8.8: Steps for Data Preparation / Reporting / Feedback


	Data Preparation / Reporting / Feedback





	Data Preparation



	Coding of Open-Ended Responses



	Final Scoring / Cut Scores / Test Reports



	Data Set Generation / Data Dissemination







How to do this with the CBA ItemBuilder? The simplest case for Data Preparation of assessment projects using the CBA ItemBuilder are studies in which the Codebook and Missing Value Coding are already included in the deployment software. If all instruments are implemented using CBA ItemBuilder content and if no ExternalPageFrame content is used, the required data preparation for result data boils down to combining data stored in case-wise individual raw data archives into a data set in the desired file format.


Data Preparation: Data preparation can begin during data collection if intermediate data are provided or made available. Typically, the data is generated in smaller units (i.e., sessions) in which a test-taker processes a set of tasks compiled for him or assigned to him via pre-load information. The data on a test taker, as provided by the assessment software, can be understood as a Raw Data Archive. Analogous to the scans of paper test booklets, these Raw Data Archives (for example, combined as a ZIP archive) are the starting point for data preparation. If raw data from computer-based assessments must be archived in terms of good scientific practice, then this can be understood as the requirement for long-term storage of the Raw Data Archives.

A first step often required to describe the collected data as pseudonymized or anonymized is the exchange of the person identifiers (ID change) that were used during data collection. Person identifiers might be used as the file name of the Raw Data Archives and might be included in several places. Since the Raw Data Archives should not be changed after data collection, the data processing means extracting the relevant information from the Raw Data Archives and changing the person identifier in the extracted result data and the extracted log data.

Approaches known for Open Science and Reproducible research (Gandrud 2020) should be used (i.e., using scripts that are maintained under version control), to allow re-running the complete data preparation starting from the Raw Data Archives to the final data sets. If the data preparation is carried out entirely with the help of scripts (e.g., using R), later adjustments are more straightforward. Possible adjustments include deletion requests for the data of individual test-takers, which might otherwise be cumbersome if, for example, a large number of data sets is created due to the collected log data (see section 2.8).



How to do this with the CBA ItemBuilder? For automatic and script-based processing of data collected with the CBA ItemBuilder and selected delivery software, the readout of raw data archives can be automated with the R package LogFSM (see section 2.8.5).


Coding of Open-Ended Responses: Operators described in chapter 5 for the CBA ItemBuilder for evaluating so-called Open-Ended Answers are currently limited. Open-ended answers (such as text answers) can only be scored automatically to a minimal extent (in the CBA ItemBuilder, only with the help of regular expressions). More modern methods of evaluating open-text responses using natural language processing methods [NLP; see, for instance, Zehner, Sälzer, and Goldhammer (2016)] might require a two-step procedure. Training data are collected in the first step and not evaluated live during test-taking. Afterward, classifiers are trained based on NLP language models or adapted in the form of fine-tuning. Once such classifiers are available, the answers can be automatically evaluated by test-takers and transferred to the data set.

A similar procedure applies to graphical answer formats (e.g., when an ExternalPageFrame allows test takers to create a drawing for their answer). For the creation of training data as preparation of an automatic coding or if answers are to be evaluated exclusively humanly, the open answer must be extracted from the raw data archives for an evaluation process (Human Scoring).



How to do this with the CBA ItemBuilder? Using the data collected during runtime (in particular using the so-called Snapshot) the TaskPlayer API can be used to restore the item in exactly the state in which the item was left by the test-taker. This allows to build solutions for human coding of open responses. Note that if content is embedded using ExternalPageFrames, the JavaScript/HTML5 content embedded into CBA ItemBuilder items must implement the getState()/setState()-interface to collect the state of the ExternalPageFrames on exit and to allow to restore the content for scoring purposes (rating).


Final Scoring: The decision of whether items already score the responses (scoring) or whether only the raw responses (i.e., the selected items, entered texts, etc.) are collected at runtime is made differently for different assessments. As long as the responses are not needed for filtering or ability estimation (see section 2.7), there is no critical reason why scoring should not be performed as part of post-processing. Only if created assessment content is shared (see section 8.7.3) is it helpful to define the scoring, for instance, directly within the CBA ItemBuilder Project Files (i.e., the files to be shared), because this way, items are automatically shared with the appropriate scoring.

Cut Scores and Item Parameters: Even if the scoring, i.e., for example, the mapping of a selection to a scoring (correct, wrong, partially correct), can be part of the item (i.e., is implemented, for instance, using the scoring operators described in Chapter 5), the Item Parameters and potential Cut Scores (i.e., threshold values for estimated latent abilities) are not considered to be part of the assessment content, because these parameters might either not be known when a newly developed instrument is used for the first time or the values might depend on the intended target population.



How to do this with the CBA ItemBuilder? To implement adaptive testing (i.e., a dynamic selection of Tasks during testing, see section 6.7.2), Item Parameters are needed. Depending on the deployment software used, the Item Parameters can be stored, for example, as an Item Pool (see section 7.5.5) or used in an R function (see section 7.3.3).


Test Reports: Different parts of an assessment software might be responsible for feedback either during the assessment (see section 2.9.1), or after data processing and scoring of open-ended responses (see section 2.9.2). Hence, reports can be generated either online (as part of the assessment software) or offline (as part of the data processing).



How to do this with the CBA ItemBuilder? You can implement basic examples of using CBA ItemBuilder items with automatic, out-of-the-box feedback using the R package ShinyItemBuilder (see section 7.3.5).


Data Dissemination: The provision and distribution (i.e., dissemination) of data from computer-based assessments, for example in research data centers, can be done for Result Data and Process Indicators in the typical form of data sets (one row per person, one column per variable). Since the different assessment platforms and software tools provide log data in different ways, log data can be transformed into one of the data formats described in section 2.8.4 as part of the data processing after an assessment.



8.7 Documentation and Archiving of Computer-Based Assessments



The assessment cycle introduced in the beginning of this chapter (see Figure 8.1) contains the Documentation & Dissemination as the last component. In general, documentation can be understood with respect to the items (i.e., the instrument) and the data (see Table 8.9).


TABLE 8.9: Steps for Documentation


	Documentation





	Item and Instrument Documentation



	Data and Log-Data Documentation





Archiving and documentation of computer-based assessments can have different objectives. The first central question is whether there is a link to research data that has already been collected. Hence, the software’s archiving often takes place in the context of the data archiving so that questions regarding the interpretation or understanding of the existing data can be answered concerning the used software. In this case, the software used should be provided along with the assessment content (i.e., tasks, instruction pages, etc.) as closely as possible to how they were used to collect the research data. However, since the software might come with specific requirements archiving the computer-based assessment must take into account these requirements so that the software can (hopefully) also be executed in the future.

Archiving of computer-based assessments can also serve the purpose that other researchers or stakeholders can use the developed assessment instruments (sharing). The two goals need not be mutually exclusive, but it should be made clear what the goal of archiving computer-based assessments is.


	Goal to archive assessment content to document an existing data set

	Goal to allow the use of developed content in future data collections



A second key issue concerns the separation of assessment software and assessment content. Such a separation exists, for example, if the software allows the export of the assessment content created with it, as it is the case, for instance, with TAO that allows exporting the items in QTI format (Question and Test Interoperability6). In the case of QTI, different software components could be used to administer assessments that use the QTI content. A similar separation also applies to the CBA ItemBuilder, which allows the assessment components created with it to be archived independently of the software (i.e., the specific version used to author the CBA ItemBuilder project files and the software used for test-deployment). Since the CBA ItemBuilder project files contain the runtime configuration (see section 8.3.3), that is sufficient to use deployment software (including TAO, see section 7.4) or the TaskPlayer API (see section 7.7).


	Requirements to run / use the software (operating system / frameworks / browsers)

	Requirements to run / use the content (compatibility of content, e.g., QTI version)



A third question concerns the anticipated, expected, and allowed use and possible modifications to the archived computer-based assessment, for instance, for future data collections on new samples. This third question includes licensing issue regarding the content (i.e., the items and possible embedded resources such as images), licensing of the software, and the technical aspects required for using (i.e., executing and running) the software securely.


	Right to use the software / the content for specific purposes (e.g., new data collection)

	Right to store the software / the content (for instance, for achieving)

	Right to distribute the software / the content for further use (e.g., for other projects)

	Right to change the software / the content (for instance, to adjust for further needs)




8.7.1 Archiving CBA Software to Document Datasets

If the goal is to archive a digitally-based assessment to interpret existing data, a first idea could be to archive the complete software as used for the data collection.7 The underlying rationale is similar to paper-based assessments and the practice of archiving the assessment materials (i.e., booklets), for instance, as PDF files. However, acknowledging that the assessment was digitally based, more than static representations for items or screens (e.g., screenshots) might be required, and archiving the assessment as an interactive system might be considered the natural choice.

Documentation of Requirements: Whether the archiving of the software used in data collection is useful depends, first of all, on how the requirements needed to run the software can be fulfilled. Accordingly, a prerequisite for investigating the viability of this approach is a documentation of all runtime requirements from a technical perspective. Assessments used in offline deployments (see section 7.2.1) might require a particular operating system, require a minimum screen resolution, and might be tested only for particular pointing devices (e.g., not tested for touch input). Beyond these apparent requirements, dependencies (i.e., specific browser versions, installed frameworks or components, such as Java or .NET), user privileges (i.e., is admin access required), and network requirements (e.g., free ports) need to be documented and considered. If assessments were performed with dedicated hardware (i.e., computers that were deployed to the assessment sites), additional settings and configurations (e.g., at the operating system level) might also be necessary in order to be able to reproduce the data collection with the archived software. In particular for mobile deployments using apps, the distribution of the assessment software to the mobile devices needs special attention. For online deployments, both perspective need to be distinguished: For online deployments, both perspectives need to be distinguished: At the client side, supported (i.e., tested, see section 8.4.1) browsers need to be documented, while at the server side, documentation of runtime requirements and the server configuration might be relevant to run the assessment software.

Software Virtualization: Techniques such as Virtual Machines (used, for instance, for desktop virtualization, such as VMWare, Virutal Box or Parallels) and Containers (used, for instance, for server virtualization, such as Docker or LXC) might help to make software (in specific environments) available for a more extended period. However, in particular for desktop virtualization, licensing of the operating system need to be considered.

Intended Use of Archived Assessment Software: The critical question regarding the usefulness of this type of archiving is what researchers can do with assessment software archived in this way. If no further precautions have been taken in the assessment software itself, then items can be replayed and answered in the combinations used in the field (e.g., within a booklet design). This option can be helpful, for example, to learn about the items (i.e., the assessment content) in context, to inspect the behavior of items and the assessment platform, and to investigate how prompts or feedback were displayed. If the archived assessment software also provides the generated (raw) data access, this approach also allows checking how a particular test taker or response behavior is stored or represented in the data set.



8.7.2 Dedicated Approaches for Documenting CBA Data

As described in the past section, archiving the assessment software itself, while an obvious idea, is of limited benefit for documenting data from computer-based assessments without special provisions within the assessment software.

Documentation of Result Data and Process Indicators: In terms of documentation of outcome data (i.e., raw responses and input as well as scored responses), data sets with result data of computer-based surveys are standard. Hence, codebook documents can be used to describe the result data (in terms of metadata). Result Data, available in variable values per person, can be supplemented by additional Process Indicators (i.e., information describing the test-taking process), for which a value (including NA) is also expected for each person.

If knowledge of the specific item content is necessary for interpreting the result data or the process indicators, insight into tasks provided by an archived assessment software may be sufficient. However, some information about the log data generated when interacting with the assessment content can be necessary to document Raw Log Events and Contextualized Log Events (see section 2.8.1 for the terminology).

Documentation of Raw Log Events and Contextualized Log Events: Which interactions are generally stored by a digitally-based assessment can often be documented and described even without the specific assessment content. In case of the CBA ItemBuilder, the log events provided by the items are described for the different components used to implement the content (see appendix 10.7 for a documentation of log events), and additional log events might be defined by the item author (described as Contextualized Log Events). Moreover, the deployment software is expected to add additional log events at the platform-level.

The more challenging part of the documentation is to relate the assessment content and the collected log data so that the data can be meaningfully interpreted in the context of test-takers interactions and assessment content.

Real Items and Live Access to Log Events: The obvious option to allow researchers to inspect interactive assessments is to give them the computerized items in a form where the events stored in the log data are visible after one has demonstrated a particular behavior or interacted with the item. This can be achieved by different approaches, either by modifying the deployment software (see, for instance, section 7.3.7) or by using the authoring software (see Trace Debug Window in section 1.6.2).

Documenting Instruments Using Mock-Items: Given that assessments are often translated (e.g., in the context of international large-scale assessments), there is another way of documenting interactive items to facilitate the interpretation of log data. For that purpose, we define Mock-Items as items in which the sensitive item content (i.e., everything that should not become public to keep the items secure) is replaced by placeholders. Such a replacement is required for all texts, images, video, and audio files that could provide hints about the item’s content. However, it is assumed that replacing the content is possible without altering or destroying the interactive items’ structure and functioning.



How to do this with the CBA ItemBuilder? The recommended strategy to document the log data of assessment content created with CBA ItemBuilder is to provide access directly to the CBA ItemBuilder Project Files. If this is not possible for item content protection, mock items might help.


Screen Casts or Annotated Screenshots: Documenting log events can also be done using screen casts (i.e., screen recordings showing a particular behavior and the generated log events), for instance using released items.  Or annotated screenshots of computer-based instruments can be used.  And even specifically created webpages that show how specific interaction are logged can be used (e.g., PIAAC R1 Log Data Documentation).



8.7.3 Approaches to Archive or Share Assessments for Re-Use

Beyond documenting existing data, an important goal can be sharing developed assessment content to use in future data collections.

Sharing Software as is: Although similar to the idea described above (see section 8.7.1), sharing assessment content bundled with an assessment software as-is for re-use adds additional challenges. The following aspects require special attention: First, it must be considered that the redistribution of the software is different from the use of the software, so it may be a question of licensing whether the right to redistribute exists for the software and for the included content. A second aspect concerns the issue of IT security. For archiving accompanying a data set, the assessment software is used under controlled conditions. However, if sharing assessment for re-use aims to facilitate future data collections with a digitally-based assessment using existing software as is, it must also be possible to do so safely. For online deliveries, in particular, this requires patching and applying security updates sooner or later, meaning the possibility of maintaining the software.

Sharing of Software with Sources: Many assessment software maintenance and customization issues can be solved if the runtime components (i.e., compiled or built code) and the source code are archived. In particular, if assessment content and assessment software are not separate, making them available, for example, via a public source code repository (e.g., GitHub.com) may allow other researchers to reuse the resources developed. While the open source provision of assessment software naturally presupposes the right to disseminate the sources, it also presupposes the human resources (i.e., appropriate IT know-how) to be able to use them.

Sharing of Content (Only): An obvious alternative to sharing created assessment content for further use arises when the Content can be separated from the Software. The option to share created items as Content is at first analogous to paper-based assessment. As soon as a PDF or Word document of a test booklet is shared, it can be used to prepare future assessments.



Question & Test Interoperability (QTI) is a standard to share assessment content that is supported, for instance, by TAO. Using the converter fastib2pci, CBA ItemBuilder generated content can be packaged as PCI components, that can be embedded and used in QTI items (see section 7.4).


Two examples will be examined in more detail here. If a standard exists (as is the case, for example, with Open Office XML8 for text documents), then different programs can use documents that follow that standard. The Question & Test Interoperability (QTI) specification can be understood as a similar standard for computer-based assessments. If, for example, items created in TAO are exported in QTI format, then these can be stored and used in later assessments if an assessment software can read and process the QTI format. The apparent prerequisite for this model to be applicable is that the assessment content can be implemented as QTI items. As the field of computer-based assessment continues to evolve, the QTI standard is also being expanded and adapted9. Hence, it might be necessary to document the exact version of the QTI standard, and only the particular version of the software used to author the QTI items (e.g., a specific TAO version) might interpret the assessment content precisely (i.e., the rendering and behavior of the interactive content might be different across different QTI players). Moreover, if the software used for QTI editing adopt to a new version, a migration process might be required.



How to do this with the CBA ItemBuilder? Assessment content created with CBA ItemBuilder in one version can be archived as CBA ItemBuilder Project Files and shared for later use. To use the assessment content, delivery software containing the runtime of this CBA ItemBuilder version is required.


If the standard is not sufficient, sharing the content independently from the software used to create the content can also be possible. This is illustrated with the CBA ItemBuilder, which does not follow the QTI standard. However, as long as a deployment software is available that supports this version of the CBA ItemBuilder, the generated content can be used for future data collections.

Migration Strategy: Project Files of recent CBA ItemBuilder versions can be used for assessment projects, as long as sufficient browser support is provided and no technical or security-related issues prohibit the use of old versions. If archived Project Files of an older version can no longer be used in current delivery software, older Project Files can be migrated using the CBA ItemBuilder. Migrating an outdated Project File means opening the Project File in a newer CBA ItemBuilder and then saved as a Project File in this new version. Doing so will update the generated code or the runtime configuration required to use the Project File with a particular deployment software.

The update of Project Files is possible because the implementation of the CBA ItemBuilder ensures that a newer version can read the content of the previous version and convert it if necessary. Accordingly, it may be necessary to perform the migration in multiple steps (using intermediate versions of the CBA ItemBuilder). The release notes of the CBA ItemBuilder (see Table 10.5) provide information on points to be considered regarding backward compatibility.



How to do this with the CBA ItemBuilder? The recommended strategy for sharing and archiving assessment content created with CBA ItemBuilder is to provide Project Files. As long as suitable deployment software supports the version, the Project Files can be used directly. The Project Files can be migrated with the CBA ItemBuilder if no deployment software supports the (outdated) version.




8.7.4 Assessment Content as Open Educational Ressources (OER)

The archiving of created and digitally based implemented assessment content in educational science applications can be understood as a particular form of Open Educational Resources (OER). This is particularly true if the goal is to enable content sharing, where the developed items constitute the shared resource.



How to do this with the CBA ItemBuilder? To support the sharing and provision of assessment content created with CBA ItemBuilder, a suitable license should be defined and metadata stored within the CBA ItemBuilder Project Files (see section 6.3.4)


Before making extensive adjustments to items, it must be thought about whether this will change psychometric properties and item parameters that have been empirically determined or verified, for example, with the help of a scaling study (see section 2.5.4).









	Note that content embedded as ExternalPageFrame is currently not included in the replay-completeness.↩︎


	Not that file hashes are typically only used for single files.↩︎


	See here for an example.↩︎


	An example for adjusting the audio volume of embedded audio files can be found here.↩︎


	The regular URL is http://127.0.0.1:7070/app/. In this URL 127.0.0.1 is the local IP address, 7070 is the Port used by the CBA ItemBuilder for any preview (see appendix 10.4).↩︎


	“Question and Test Interoperability (QTI): Implementation Guide” (2022)↩︎


	Sometimes deciding which version of a computer-based assessment should be archived might also be relevant. Suppose changes in the assessment software and content are tracked, for instance, using version control tools (see section 8.3.2). In that case, the datasets might reference that particular version, and archiving should contain all versions used during data collection.↩︎


	ECMA-376, ISO/IEC 29500↩︎


	See, for instance, 1EdTech Question & Test Interoperability (QTI)↩︎








  
  
  ch011.xhtml
  
  




Closing Chapter



Without a doubt, the possibilities and options of computer-based assessment have not yet been exhausted. Further research and the development of future software tools are necessary to collect diagnostic information efficiently that allows deriving inference with valid interpretations. Even though there are still many ideas and reasons to further develop in particular the CBA ItemBuilder, we provide this tool as it is to support Open Science (Stodden, Leisch, and Peng 2014) and to support Reproducible Research (Gandrud 2020; Christensen, Freese, and Miguel 2019) in the area of computer-based assessment.


	Why Open Science? The development of assessment instruments, psychometric tests, and questionnaires in a research context is often publicly funded. Making these instruments available for later use contributes to an Open Science understanding.


	Why Reproducible Research? The comparability of assessments (i.e., mode effects) is influenced by a large number of small Properties of Measurement (see section 2.2.1). To increase the reproducibility of findings, insight and exchange about the computer-based measurement instruments are necessary, which might be fostered by sharing or providing restricted access to CBA ItemBuilder items.




Interactive learning content and related assessment items created in CBA ItemBuilder can also be shared in terms of Open Educational Resources (OER, see section 8.7.4).


How to Share?



Sharing CBA ItemBuilder items is easy. Define the metadata (see section 6.3.4) within the CBA ItemBuilder project files to inform about the author, the license, and the possibilities to use your content and upload the CBA ItemBuilder item to a repository (e.g., osf or GitHub). If you choose GitHub, you might create a new repository using the template provided as fastib2pci (see section 7.4). Using this template will not only automatically provide a PCI component but also a simple preview of the item content as a static GitHub page. You can also archive your computer-based items as assessment material to research data centers.



How to Contribute?



Requirements for the development of the CBA ItemBuilder are collected and prioritized by the Centre for Technology-Based Assessment (TBA). If features are needed or need to be expanded for future projects, contact the ib-support@dipf.de.

Open Source development is more than welcomed for HTML5/JavaScript packages that can be used as ExternalPageFrame and for embedding of CBA ItemBuilder tasks using the TaskPlayer-API (see section 7.7) into open source software that can be used for test deployment.

Suggestions for example items, references or feedback about errors or improvement of this book can be provided to ib-support@dipf.de.







  
  
  ch012.xhtml
  
  




Appendix





  
  
  ch013.xhtml
  
  




9 Glossary of Terms




TABLE 9.1: Glossary of (Technical) Terms used in this Book






	Term
	Description





	Adaptive Testing
	(see Computer-Adaptive Testing)



	Assessment Component
	Depending on the intended use, the Project Files created with the CBA ItemBuilder can contain either instruction pages or single items, questions, so-called units, stages or complete tests. For simplification, this book will therefore refer to Assessment Components, meaning Project Files with a particular Task used as entry point.



	CBA Presentation Size [bookmark: Glossary-Entry-CBA-Presentation-Size]
	CBA ItemBuilder projects are always created for a specific resolution. The CBA Presentation Size for new projects is defined as a property of the started CBA ItemBuilder instance and can be changed in the menu via the entry ‘Utilities > Open preferences’ (see section 3.2.2). The CBA Presentation Size for existing projects is defined in the Global Properties (see section 3.6.2).



	Class
	In the context of the CBA ItemBuilder, the term Class is used for the assignment of hit or miss conditions of the Scoring to groups or variables (see section 5.1).



	Command
	(see Runtime Command)



	Computer-Adaptive Testing [bookmark: Glossary-Entry-CAT]
	Computer-based adaptive testing (CAT) is a psychometric technique in which the selection of administered items from an item bank is designed to increase measurement efficiency by taking into account previously observed answers (see sections 2.7.4 and 6.7.2).



	Component [bookmark: Glossary-Entry-Component]
	For creating items with the CBA ItemBuilder, all objects that can be added to an item from the Palette are called Components (see section 3.7). Components that can be added to a currently selected Component in the Drawing Area of the Page Editor, are listed in the Palette. Only Containers can have nested Components.



	Component Edit
	The list of all Components that are nested in the the current selected Component are listed in the so-called Component Edit view (see section 3.1.2).



	Conditional Link
	Link which can refer to different pages (including the current pages) via conditions and can execute optional operators when called (see section 4.3).



	Container [bookmark: Glossary-Entry-Container]
	Containers are Components that can contain other Components (see section 2.11.4). Components that belong to a common container might share properties. For instance, the radio buttons (components of type RadioButton, see section 3.9.2) that belong together are nested in a specific container, called RadioButtonGroup.



	Context Menu [bookmark: Glossary-Entry-Context-Menu]
	Menu (see section 3.1) that can be called to configure components in the Page Editor and to call commands in the Project View, Component Edit and in the Embedded HTML Exlorer using the right mouse button (secondary click).



	Dialog [bookmark: Glossary-Entry-Dialog]
	Pages whose Frame component is configured to be displayed as a popup or dialog (see section 3.15). Dialogs can either be displayed as an additional page while continuing to interact with the main page, or dialogs are displayed as Modular Dialogs which are displayed exclusively and do not allow interaction with the underlying page.



	Domain Specific Language (DSL)
	The syntax components used for designing the dynamic parts of assessment components and for scoring tasks are not defined in any specific programming language. Instead, the CBA ItemBuilder uses its own syntax for the domain of computer-based assessment, which can be referred to as a domain-specific language (DSL). Based on this syntax, a configuration is then generated, which can be processed at runtime in a programming language (e.g. JavaScript).



	Entry Point
	Each Project File that is edited with the CBA ItemBuilder and then used to configure test deliveries must define entry points. These entry points are defined as Tasks and also include the scoring definition (see Task).



	Event
	(see either Log-Event or FSM-Event)



	Execution Environment
	The CBA ItemBuilder creates Assessment Components that can be used in assessments as test assemblies in so-called Test Deliveries (see chapter 7).



	Finite-State Machine (FSM)
	Finite-state machines are used as logic layer inside the CBA ItemBuilder to allow complex item behavior and advanced interactivity (see section 4.4). This layer can be used to modify the visual presentation or behavior of items in a very flexible way, using FSM Events, FSM Variables and FSM Operators. Many of the advanced functions of the IB can be constructed by using one or multiple (nested) finite-state machines.



	Frame
	Assessment components are designed with the CBA ItemBuilder using pages of different types. Each page needs a root component, which is used to define page properties (such as size). Components of type Frame serve as root element for pages (see section 3.5.1).



	FSM Event
	Finite-state machines (FSM) process so-called FSM events (see section 4.4.3) using deterministic rules (see section 4.4.4). The FSM events can be triggered automatically by time intervals, by timers or by user interactions. Many components therefore allow one or more FSM events to be assigned to them (see section 4.4.3). FSM events can be used during the administration of assessment components. After administration, user interactions and internal state changes are stored in Log events in the Log data, and can be analyzed (see section 2.8), for instance, to extract Process Indicators.



	FSM Operators [bookmark: Glossary-Entry-FSM-Operators]
	If a rule is defined for the current state of a Finite-State Machine (FSM) that matches a FSM event that has just been triggered, then the FSM will process that rule and change to the new state if so defined as FSM Transition. As part of the rule, operators can be defined that are executed to make changes to variables or components. The CBA ItemBuilder provides a set of FSM Operators that can be used to perform actions in transitions (see section 4.4.6).



	FSM Rules [bookmark: Glossary-Entry-FSM-Rules]
	The possible transitions between states of Finite-State Machines (FSM) are defined using rules (see section 4.4.4). Rules are triggered by FSM events and can contain conditions (see section 4.4.5).



	FSM Variables [bookmark: Glossary-Entry-FSM-Variables]
	The CBA ItemBuilder adds variables to the capabilities of (nested) Finite-State Machines (FSM). Variable values can be used with the help of Value Maps and Map-Based Value Displays (see section 4.2.5) to change the appearance of pages. FSM variables can also be used in scoring conditions (see section 5.3.5) and in conditions of FSM Rules (see section 4.4.5).



	GIF
	Graphics Interchange Format is an 8-bit-per-pixel bitmap image format that was introduced by CompuServe in 1987 and has since come into widespread usage on the World Wide Web due to its wide support and portability (see section 3.10.1 for supported file formats of the CBA ItemBuilder).



	Global Properties
	Settings that apply to a particular project are defined in the Global Properteis (see section 3.6.2).



	HTML5/JavaScript
	Hypertext Markup Language (HTML) in version 5, as defined by the World Wide Web Consortium (W3C) and the scripting languages JavaScript that is used browsers to support interactive content.



	Hit-Condition
	(see Scoring Condition)



	Item
	A part of a test assembly corresponding to a question or task in an assessment. Items can be presented each on a single page or multiple items are placed on one page, depending on the task design and the implemented navigation (see section 2.4).



	Item Size
	(see CBA Presentation Size)



	JPEG
	JPEG (Joint Photographic Experts Group) is a commonly used method of compression for photographic images (see section 3.10.1 for supported file formats of the CBA ItemBuilder).



	Link
	The connection of pages in the CBA ItemBuilder is done via links. A link can be triggered by clicking on different components. Links can also be integrated into components of type HTMLTextField or TextFiel. Links that always lead to the same page (see section 3.11) are distinguished from Conditional Links (see 4.3).



	Main Menu
	Main menu of the CBA ItemBuilder at the top of the program window (see section 3.1.1). This menu must be distinguished from the context menus of the CBA ItemBuilder (see Context Menu).



	Miss-Condition
	(see Scoring Condition)



	Mock Cases
	Click patterns used to check scoring and data storage (see section 8.4.2).



	Mock Items
	For the interpretation of log data from computerized assessment, access to tools is necessary so that the meaning of log events can be clearly interpreted and contextualized. If the release of the original items is not possible, it is possible to create so-called Mock Items, which do not contain any protected item content, but are similar enough in structure to the original items that they can be used to interpret the log data (see section 1.6).



	Modal Dialog
	(see Dialog)



	Log-Events [bookmark: Glossary-Entry-Log-Event]
	Interactions between test-takers and an assessment platform can be stored in the form of log data, which consists of a variety of events of different types (Log-Events, see section 1.6). Together with the task content, process indicators can be derived from the analysis of log data (see section 2.8).



	Minimal Example
	Small, fully executable example illustrating a particular functionality (see section 8.1).



	Navigation
	The term navigation is used to describe how test-takers can move between different elements (between-item navigation), or within an element (such as an item or a units (within-item navigation). Different response elements (for example buttons) can be used to trigger navigation between pages within-items. Likewise, FSM operators or Commands can be used to trigger between-item navigation.



	Operators
	(see FSM Operators or Scoring Operators)



	Panel
	Components of type ‘Panel’ are used to group components and to display background images or frames, for example. Typical pages of type Simple Page need at least one additional component of type Panel within the root element (Frame, see section 3.5).



	Page
	Each CBA ItemBuilder project can consist of one or multiple pages. Pages are of a particular page type. Pages typically contain a Frame and a Panel, as well as additional Components (either visual elements such as texts, images or response elements, such as CheckBoxes or Buttons) or Containers (for instance, additional Panels or RadiouButtonGroups).



	Page Type
	Each page is of a particular type, and several page types are available in the CBA ItemBuilder. The available components and containers which can be used to add content to a page depent on the page type. Pages of different type have to be used to implement specific parts of an complex computer-based item. The type of a page, for example, Simple Page, WebBrowserPages or TaskBarPages is defined when the page added to the project and it is impossible to change the page type.



	Palette [bookmark: Glossary-Entry-Palette]
	The Palette is the part of the CBA ItemBuilder user interface that gives access to components that can be added to the currently selected part in the visual designer.



	PNG
	Portable Network Graphics, a bitmapped image format that employs lossless data compression (see section 3.10.1 for supported file formats).



	Preview
	The CBA ItemBuilder is the authoring tool to create elements for computer-based assessments. These elements can be used in browser-based test deliveries. In order to see how the items will be rendered in the browser environment, the CBA ItemBuilder allows to preview the elements (Tasks, Projects or Pages) by automatically generating the required HTML pages and opening the pages a web-browser.



	Preferences
	Default settings for the CBA ItemBuilder are defined in the CBA ItemBuilder Preferences (see section 3.2.2).



	Project File
	Item authors can build and edit Project Files within the CBA ItemBuilder. A Project File can contain assessment components (i.e., either a single item, several units, or even a complete test). The decision about how many separate project files are used to computerize a particular test material is up to the item author. Project files create with the CBA ItemBuilder are ZIP archives. However, very large files with many items in single IB project are not suggested, because the size of the ZIP files might become too large.



	Properties / Properties view
	The components added to an item are configured using additional properties. Properties of the currently selected component can be edited in the so-called Properties view.



	Process Indicator
	Specific information that, extracted from individual log events (raw log data), provides knowledge about a particular behavior as a person variable (see section 2.8.



	RAP (depraved)
	The technical platform used to generate HTML content in older CBA ItemBuilder versions (RAP = Remote Application Platform).



	React
	A JavaScript library used by the current CBA Item Builder as part of the generated HTML content.



	Resources
	Resources used within CBA ItemBuilder projects are included in the project files, for example, pictures, audio files and video files.



	Regular Expression
	A sequence of characters that define a search or validation pattern (RegExpr, see section 6.1). The CBA ItemBuilder uses “Unicode Technical Standard#18 Unicode Regular Expressions” (http://www.unicode.org/reports/tr18/) to score text responses (see section 6.1.2) and as Input Validation Pattern to restrict the characters that can be entered in text entry items (see section 6.1.3).



	Raw Variables [bookmark: Glossary-Entry-Raw-Variables]
	For the definition of result variables, a distinction can be made between variables that contain the raw response (as entered by the test-taker) and result variables that store the scored response (see Scoring Variables)). In the CBA ItemBuilder Raw Variables and Scoring Variables can be defined. For storing input text (and numeric variables) the result_text() operator can be used (see section 5.3.10).



	Rules
	(see FSM Rules)



	Runtime Command [bookmark: Glossary-Entry-Runtime-Command]
	Command that can be assigned as action to components such as Buttons, and that is processed by the runtime environment (e.g. to switch to the next task, see 3.12).



	Scoring [bookmark: Glossary-Entry-Scoring]
	Scoring refers to the automatic analysis of test-taker’s response with respect to pre-defined (scoring) rules. Item authors can precisely define scoring patterns for each possible response. Scoring patterns are organized within Task (see section 5.1 for details).



	Scoring Condition [bookmark: Glossary-Entry-Scoring-Condition]
	The scoring of CBA ItemBuilder Tasks is structured using conditions, which can be defined in CBA ItemBuilder as Hit- (or Miss-) Conditions. For categorical variables, a Scoring Condition assigned to a Class (i.e. variable) is a possible categorical value. Scoring operators can be used to define when exactly a Class should be assigned this value (see section 5.3). This procedure also allows the definition of missing values (see section 2.5.2).



	Scoring Operators [bookmark: Glossary-Entry-Scoring-Operators]
	For the definition of scoring conditions, operators can be used to form logical expressions or to evaluate the state of components, the visited pages or occurred states, etc. (see section 5.3).



	Scoring Variables [bookmark: Glossary-Entry-Scoring-Variables]
	In the scoring definition, the information about which selection or input should be counted as correct (Full Credit) or partial (Partial Credit) can already be taken into account. In this case it is possible to speak of Scoring Variables.



	String
	A string is a data type used in programming that is comprised of a set of characters that can contain text, spaces and numbers.



	TAO
	The TAO Framework is an open-source project which provides a very general and open architecture for computer-assisted test development and delivery. Assessment components created with the CBA ItemBuilder can be used with TAO using the PCI interface (see section 7.4).



	Task [bookmark: Glossary-Entry-Task]
	Within CBA ItemBuilder projects, Tasks are self-contained item packages defined by the item author. Tasks are used to provide entry points into CBA ItemBuilder project files that can be used for test assemblies.



	Task-Editor
	Part of the CBA ItemBuilder that allows to define Tasks (see section 3.6 and to define Hit-/Miss-Conditions for Scoring).



	Template
	Pages can be exported as templates for later use. Using this functionality, page duplication and efficient workflows for creating assessment components can be realized with the CBA ItemBuilder (see section 6.8.7).



	Test Assembly
	The assembly of items into tests or test parts is called test assembly. This can be done to create booklets, rotations or multi-stage tests before test delivery (once), or during testing on the fly or depending on previously observed responses (see Computer-Adaptive Testing).



	Test Delivery
	The collection of data in computer-based assessment is referred to as test-delivery. Assessment components created with the CBA ItemBuilder can be used for different forms of delivery, e.g. stand-alone offline or online (see chapter 7).



	Toolbar
	Important functions of the CBA ItemBuiler are permanently accessible via small icons directly below the Main Menu via the Toolbar (see section 3.1.1).



	Trace-Event
	(see either Log-Event)



	Transitions
	(see FSM Rules)



	Variables
	(see FSM Variables, Raw Variables, or Scoring Variables)



	Weight
	Decimal number that can be defined when scoring (usually 11). If a weight is used, then one result can be scored per task (the hit or miss condition with the highest weight). The use of Classes is then not possible (included to maintain compatibility with previous CBA ItemBuilder projects).



	WYSIWYG
	“What you see is what you get” – content (text and graphics) displayed onscreen during editing appears in a form closely corresponding to its appearance when printed or displayed as a finished product.



	X-Page
	Expression used for pages that can be displayed in addition to other pages. The X-Page layout distinguishes between X-Pages and regular pages (such as simple pages). The definition of a page as X-Page is done when the page is created (see 3.4).



	X-Page-Layout
	Arrangement of pages using a regular page and an X-Page simultaneously and side by side. Can be defined for a Task (see 3.6.2).









  
  
  ch014.xhtml
  
  




10 Useful Tables




10.1 Main Menus

The tables in this annex provide information on the different menus of the CBA ItemBuilder. The description contains references to the sections where further information can be found.

The CBA ItemBuilder contains the following main menus that can be accessed directly in the CBA ItemBuilder window:


	File menu (see table 10.1)



	Edit menu (see table 10.2)

	Diagram menu (see table 10.3)

	Project menu (see table 10.4)

	Templates menu (see table 10.5)

	Utilities menu (see table 10.6)

	Help menu (see table 10.7)




TABLE 10.1: Overview of the File menu.







	File >
	Toolbar
	Description





	New Project
	yes 
	Create a new project (see 3.2.1). If a project is currently open that contains unsaved changes, you must decide whether to save or discard the changes before creating the new project.



	Open Project
	yes 
	Open an existing CBA ItemBuilder project for editing and previewing (see section 1.4.1).



	Save
	yes 
	Save changes in the current CBA ItemBuilder project.



	Save As...
	yes 
	Save current CBA ItemBuilder project with new name (see section 3.2.1).



	Close Project
	yes 
	Closes the current project. If the current Project File contains unsaved veining, a prompt is displayed.



	Exit
	no 
	Exits the CBA ItemBuilder. If the current Project File contains unsaved veining, a prompt is displayed.






TABLE 10.2: Overview of the Edit menu







	Edit >
	Toolbar
	Description





	Undo
	no 
	Undo last action. Several actions can be undone (see 3.7).



	Redo
	no 
	Redo the undone action and perform it again. If several actions have been undone, several actions can also be redone (see 3.7).



	Cut
	no 
	Not implemented for Page Editor (see section 3.7.2 on how to alternatively use the Duplicate feature).



	Copy
	no 
	Not implemented for Page Editor (see section 3.7.2 on how to alternatively use the Duplicate feature).



	Paste
	no 
	Not implemented for Page Editor (see section 3.7.2 on how to alternatively use the Duplicate feature).



	Delete
	no 
	Not implemented for Page Editor.



	Select All
	no
	Select all components in the current Page Editor






TABLE 10.3: Overview of the Diagram menu







	Diagram >
	Toolbar
	Description





	Font
	no 
	Font setting for a component selected in the Page Editor, if the component provides a text property. Similar to the settings in the tab Appearance of the Properties view (see section 3.1.4).



	Fill Color
	no 
	Fill color for a component selected in the Page Editor, if the component provides a Background Color property (and Is Transparent: false). Identical to the settings in the tab Appearance of the Properties view (see section 3.1.4).



	Line Color
	no 
	Line color for a component selected in the Page Editor, if the component provides a Border Color property (and a non-zero Border Width is configured). Identical to the settings in the tab Appearance of the Properties view (see section 3.1.4).



	Line Type
	no 
	(not supported)



	Line Width
	no 
	(not supported)



	Arrow Type
	no 
	(not supported)



	Line Style
	no 
	(not supported)



	Select
	no 
	Sub-menu with the entries All, All Shapes and All Connectors to select elements nested in the currently selected component of the Page Editor. Note that Connectors refers to paths defined for ImageMaps (see section 3.9.10).



	Arrange
	no 
	(Function not supported for current use.)



	Align
	no 
	Sub-menu with the entries Align Left Align Center, Align Right and Align Top Align Middle, Align Bottom.



	Text Alignment
	no
	Text alignment settings for components that support the property Alignment.



	Order
	no
	Sub-menu with the entries Bring to Front, Send to Back, Bring Forward and Bring Backward that can be used to change the Z-Order of components in the Drawing Area of the Page Editor. Note that this order is only for editing purposes and does not affect the order in the Preview.



	Auto Size
	no 
	(Function not supported for current use.)



	Make Same Size
	no
	Helper to make Width, Height or Both (Width and Height) of two or more selected components identical.



	Filters
	no
	(not supported)



	View
	no
	Sub-menu to show or hide Grid or Rulers in the Drawing Area of the Page Editor. Also allows to activate or de-activate the Snap to Grid feature (see section 3.7.1).



	Zoom
	no 
	Increas zoom in the Page Editor (see section 3.1.1).






TABLE 10.4: Overview of the Project menu







	Project >
	Toolbar
	Description





	Preview project
	yes 
	Launch the dialog to start a Preview of a selected Task, the whole project or a selected Page (see section 1.4.2).



	New page from template
	no 
	Create a new page based on an existing page template (see section 6.8.7).



	Import page
	no 
	Import an exported page to the current CBA ItemBuilder Project File (see section 6.8.7).



	Import external content
	no 
	(Function not supported for current use.)



	Import XLIFF
	no 
	Import XLIFF file from external translation (see section 6.9).



	Verify text translation
	no 
	Verify imported XLIFF translation (see section 6.9).



	Finalize translation
	no 
	Finalize external translation (see section 6.9).



	Edit all text blocks
	no 
	Edit all defined text blocks for TextFields used in the current CBA ItemBuilder Project File (see section 5.3.8).



	Edit all text fields
	no 
	Edit al text fields used in the current CBA ItemBuilder Project File (see section 1.7.2).



	Edit all user defined IDs
	no 
	Dialog to edit all UserDefinedIds in the current CBA ItemBuiler Project File (see section 3.7.4).



	Update rich text displays
	no 
	Update the images of all TextFields used in the Page Editor.





[Issue 40]
Browse resources | yes  | Opens the Resource Browser used to import and manage media files resources (see section 3.10.1). Browse Task and Item Score | yes  | Opens the Task Editor used to define Tasks and Scoring for the current CBA ItemBuilder Projecct File (see section 3.6). Browse Value Maps | yes  | Opens the editor for Value Maps in the current CBA ItemBuilder Project File (see section 4.2.4). Edit State Machine | yes  | Opens the State Machine Tree View and the State Machine Syntax for the current CBA ItemBuilder Project File (see section 4.4.1). Edit State Chart | yes  | (Function not supported for current use.)


TABLE 10.5: Overview of the Template menu







	Templates >
	Toolbar
	Description





	Browse templates
	no 
	Opens the Template Browser of the CBA ItemBuilder that allows to show, import, delete and export pages saved in the CBA ItemBuilder Instance as Templates (see section 6.8.7).






TABLE 10.6: Overview of the Utilities menu







	Utilities >
	Toolbar
	Description





	Xliff Editor
	yes 
	(Currently not maintained, see section 6.9)



	Open preferencs
	no
	Open the CBA ItemBuilder preferences dialog (see section 6.9 for CBA Item Builder XLIFF settings, section 6.8.2 for CBA Item Fonts, section 3.6.2 for CBA Presentation Size, section 1.4.2 for CBA Preview and section 3.1.4 for CBA Ruler And Grid settings).






TABLE 10.7: Overview of the Help menu







	Help >
	Toolbar
	Description





	Help Contents
	no 
	Shows the Quick Reference embedded in the CBA ItemBuilder.



	Help Online
	no 
	Shows online help.



	About
	no 
	About dialog showing the version of the CBA ItemBuilder (see section 1.3).



	Update Software
	no 
	Not implemented. See section 1.2 for information about new versions and upates.





[Issue 41]


10.2 Operators


The power of CBA ItemBuilder`s Conditional Links (see section 4.3) and Finite-State Machines (see section 4.4) is achieved by the fact that actions can be executed when Conditional Links are activated or transition between states are triggered by active Rules. Moreover, scoring of Tasks can incorporate component states and additional information provided by the CBA ItemBuilder at runtime (see section 5.3.2).

For many purposes, so-called Operators are available (see section 4.4.6), which are listed in a table in this part of the appendix:


	Table 10.8 lists operators for State Machines

	Table 10.9 lists operators for Component States

	Table 10.10 list operators for Trees

	Table 10.11 lists operators for Evaluations

	Table 10.12 lists finite-state machine operators for Task Management

	Table 10.13 lists finite-state machine operators for Calculation Engine

	Table 10.14 lists Logical Expressions



	Table 10.15 lists operators for Comparisons

	Table 10.16 lists Arithmetic operators



	Table 10.17 lists Miscellaneous operators



In addition to the operator and a description, each table also indicates whether the operator has a return value. If this is the case, an operator can also be used in a condition (see section 4.4.5 for conditions in FSM Rules, section 4.3 for conditions in Conditional Links, and section 5.3.2 for Scoring Conditions).



Tables in this appendix last verified and updated for version 9.1.




TABLE 10.8: Operators for State Machine Variabless






	Operator
	Description





	initFSM(Events)
	Execute state machine events.



	raise(Event)
	Raise the given Event after the current event has been processed completely. Multiple operator calls in one rule raise the events in the order of the operator calls.



	reset(Variable, Variable, ...)
	Set the values of the given Variables to 0.



	set(Variable, Value)
	Set the given Variable to the given Value.



	setFSMEvent (Event, Timeout)
	Set the triggering interval for the given timer Event to the given Timeout (in milliseconds).



	setFSMState (State, Page)
	Set the page attribute for the given State in the state machine to the given Page.



	is_last_state (State, State, ...)
	Return true if the last state the state machine was in is one of the given States.



	raised_all_events (Event, Event, ...)
	Return true if all given Events have been raised during the execution of the current task. We consider an event raised even if it did not trigger a transition. We also include events raised by the raise() operator.



	raised_events()
	Return the number of events that have been raised during the execution of the current task. We consider an event raised even if it did not trigger a transition. We also include events raised by the raise() operator.



	raised_all_events_in_state (State, Event, Event, ...)
	Return true if all given Events have been raised in the given State during the execution of the current task. We consider an event raised even if it did not trigger a transition. We also include events raised by the raise() operator.



	raised_nb_events (Event, Event, ...)
	Return the number of events among the given Events that have been raised during the execution of the current task. We consider an event raised even if it did not trigger a transition. We also include events raised by the raise() operator



	raised_nb_events_in_state (State, Event, Event, ...)
	Return the number of events among the given Events that have been raised in the given State during the execution of the current task. We consider an event raised even if it did not trigger a transition. We also include events raised by the raise() operator.



	variable_in (Variable, Value, Value, ...)
	Return true if the value of the given Variable equals one of the given Values.



	visited_all_states (State, State, ...)
	Return true if all given States have been visited during the execution of the current task.



	visited_all_values_of_variable(Variable, Value, Value, ...)
	Return true if the value of the given Variable has covered all given values during the execution of the current task. Only initial values and values before and after an event has been processed are considered. Intermediate value changes due to modifications by the user (e.g. through a SpinnerValueInput) or during event processing are left out. 0 is used as variable value at the start of the FSM unless the variable has been initialized explicitly to a different value when processing the initial transition from the start state.



	visited_nb_states (State, State, ...)
	Return the number of the given States that have been visited during the execution of the current task.



	visited_nb_values_of_variable(Variable, Value, Value, ...)
	Return the number of given Values that the given Variable has covered during the execution of the current task. Only initial values and values before and after an event has been processed are considered. Intermediate value changes due to modifications by the user (e.g. through a SpinnerValueInput) or during event processing are left out. 0 is used as variable value at the start of the FSM unless the variable has been initialized explicitly to a different value when processing the initial transition from the start state.






TABLE 10.9: Operators for Component States






	Operator
	Description





	setActive(Component), unsetActive(Component)
	Set the Component ‘active’ or ‘inactive’. This switches between the two ‘toggling’ states of the Component like checked/unchecked for a CheckBox or a RadioButton, pushed/released for a Button in toggling mode or selects an item in a list like the ComboBoxItem in a ComboBox.



	setFrozen(Component), unsetFrozen(Component)
	Set the ‘Is Frozen’ attribute of the given Component.



	setHidden(Component), unsetHidden(Component)
	Set the ‘Is Hidden’ attribute of the given Component.



	setHighlightable(RichText), unsetHighlightable(RichText)
	Set the ‘Highlightable’ attribute of the given RichText component.



	setMultiselect(Container), unsetMultiselect(Container)
	Switch the selection mode of the given select group Container between mulit-select and single-select.



	setSelectable(Component), unsetSelectable(Component)
	Set the ‘Selectable’ attribute for the given Component.



	setEmbeddedPage(PageArea, Page)
	Set the given Page as embedded page for the given PageArea.



	focus(Component)
	Set the focus to a component. Note that the object should be on the current page, otherwise the focus operation might have no effect. If the object is not visible on the page it is scrolled to the object to make it visible.



	initMediaPlayer(Component, Property, Property, ...)
	Initialize the given media player Component. The following Properties will be set (if not explicitly given the default values are used):



	 
	- automaticStart (default false): Starts the media player automatically when its parent page is displayed, stops when the page is left.



	 
	- hideControls (default false): Hide all controls.



	 
	- maxPlay (default 0, means unlimited): Number of times the media player resource can be played. Note that a resource is counted as ‘played’, if it reaches the end, or if it is stopped explicitly (i.e. not when leaving the page). A sequence of pause and start operations does not count.



	setMediaPlayer(Component, Operation)
	Control the given media player Component. The following Operations are available:



	 
	- mp_start: starts the media player execution at the beginning or continues when paused.



	 
	- mp_stop: stops the media player execution and rewinds to the beginning.



	 
	- mp_pause: pauses the media player execution (without rewinding).



	setMediaPlayerVolume(Component, Volume)
	Control the volume of the given media player Component. The Volume ranges from 0 (mute) to 10 (maximum volume).



	setValueDisplayMode(Component, Mode)
	Set the drag&drop mode of the given Component. The following Modes are available:



	 
	- dd_none: the component does not allow dragging or dropping.



	 
	- dd_drag: the component only allows dragging.



	 
	- dd_drop: the component only allows dropping.



	 
	- dd_dragdrop: the component allows both dragging and dropping.



	setInputValue(InputSource, InputTarget, NewSourceValue)
	Set the text value of the InputTarget component to the current value of the InputSource component and initialize InputSource with the value of the NewSourceValue if a NewSourceValue is given. Notes:



	 
	- InputSource and Input Target can be identical, in that case only the NewSourceValue is relevant.



	 
	- If values from (multi-line) InputFields are assigned to SingleLineInputFields or SearchFields, then only the first line of the InputField (up the the ‘first end of line’ character) is taken into account.



	 
	- In a NewSourceValue String any ‘end of line’ character is represented as \n (e.g. line1\nline2\nline3).



	 
	- The operator may overwrite SingleLineInputFields or InputFields, even if they are ‘read-only’.






TABLE 10.10: Operators for Trees






	Operator
	Description





	current_node(Tree, RegularExpression)
	Return true if the node ID of the current node in the given Tree matches the given RegularExpression.



	exists_nodes(Tree, RegularExpression, RegularExpression, ...)
	Return the number of nodes in the given Tree whose node ID matches at least one of the given RegularExpressions. Each node counts once only.



	visited_nodes(Tree, RegularExpression, RegularExpression, ...)
	Return the number of visited nodes in the given Tree whose node ID matches at least one of the given RegularExpressions. Each node counts once only.



	visited_nodes(Tree, NodeIdPattern, ColumnPattern, ColumnPattern, ...)
	Return the number of nodes in the given Tree whose node ID matches the NodeIdPattern and whose column values match the specified ColumnPatterns: The first ColumnPattern corresponds to the node name, the second ColumnPattern to the first additional colum, etc. Each node counts once only.



	tree_move(Tree, Node)
	Move the currently selected node in the given Tree into the given Node. The operator ignores the ‘read-only’ flag of the Tree.



	tree_copy(Tree, Node)
	Copy the currently selected node in the given Tree into the given Node. The operator ignores the ‘read-only’ flag of the Tree.






TABLE 10.11: Operators for Evaluations






	Operator
	Description





	matches(Component, RegularExpression), matches(Component, RegularExpression, Selector)
	Return true if the text content of the Component matches the RegularExpression. For spreadsheet table cells containing a formula the formula result counts as text content. The Selector options are:



	 
	- formula: The formula text of a spreadsheet table cell counts as text content (instead of the formula value).



	user_interactions()
	Return the number of user interactions within the current task execution.



	getItemScore(Task, Calculation)
	Trigger all scoring calculations for the requested Task and return the requested calculation result. Valid Calculation values are:



	 
	- result: overall result (‘1’ if there are no misses and the minium required number of hits hab been reached, otherwise ‘0’



	 
	- nb_hits: number of hits



	 
	- hit_weight: total weight of hits



	 
	- nb_misses: number of misses



	 
	- miss_weight: total weight of misses



	 
	- credit_class: name of the class with the highest class weight



	 
	- credit_weight: weight of the class with the highest class weight



	 
	- nbInteractions: number of user interactions since start of the current task execution



	 
	- nbInteractionsTotal: accumulated number of user interactions in previous executions of the task



	 
	- reactionTime: time (in milliseconds) between the start of this task execution and the first user interaction



	 
	- reactionTimeTotal: accumulated time (in milliseconds) between the start of the task execution and the first user interactions in previous executions of the task



	 
	- execTime: time in (milliseconds) since the start of this task execution



	 
	- execTimeTotal: accumulated time (in milliseconds) in previous executions of the task



	highlighted(RichText, RichText, ...)
	Return true if in at least one of the given TextFields all non-blank characters are highlighted. Empty lines correspond to a blank character.



	complete(Selection, Selection, ...)
	Return true if all Selections are selected or completely highlighted. A text block is completely selected if all non-blank characters of the text block are highlighted. Empty lines correspond to a blank character. A Link counts as selected it it was visited already.



	partial(Selection, Selection, ...)
	Return true if at least one of the given Selections is selected or partly highlighted. A text block is partly selected if at least one non-blank character of the text block is highlighted. Empty lines correspond to a blank character. A Link counts as selected it it was visited already.



	current_page(Page), current_page(Page, PageArea)
	Return true if the given Page is currently displayed:



	 
	- One parameter variant: Is the page displayed at the top level?



	 
	- Two parameter variant: Is the page displayed in the given PageArea?



	bookmarked(Page)
	Return true if the given Page is currently bookmarked.



	integer_value(Component, RoundingMode, Default)
	Evaluate the text content (or formula value for spreadsheet table cells containing a forumula) of the given Component as integer:



	 
	- If the text content is empty or does not represent a number, return the Default value.



	 
	- If the text content represents a number and RoundingMode is ‘up’, then round up always: 1.0 => 1; 1.1 => 2; -1.0 => -1; -1.1 => -2



	 
	- If the text content represents a number and RoundingMode is ‘down’, then round down always: 1.9 => 1; 2.0 => 2, -1.9 => -1; -2.0 => -2



	 
	- If the text content represents a number and RoundingMode is ‘half_up’, then round up at x.5: 1.4 => 1; 1.5 => 2, -1.4 => -1; -1.5 => -2



	 
	- If the text content represents a number and RoundingMode is ‘half_down’, then round down at x.5: 1.5 => 1; 1.6 => 2, -1.5 => -1; -1.6 => -2



	panel_distance_range (Container, MinDistance, MaxDistance, Center, Component, Component, ...)
	Return true if



	 
	- the mutual distance of all given Components in the given Container is within the given range MinDistance..MaxDistance and



	 
	- for all other components in the given Container the distance is outside the given range for at least one of the given Components.



	 
	The distance is calculated between



	 
	- the centers of the Components if the Center flag it true



	 
	- the upper left corners of the Components if the Center flag is false.



	panel_position_range (Container, XStart, XEnd, YStart, YEnd, Center, Component, Component, ...)
	Return true if



	 
	- the (X,Y) positions of all given Components in the given Container are within the range given by XStart, XEnd, YStart and YEnd relative to the Container’s (X,Y) position and



	 
	- the (X,Y) positions of all other components in the given Container are outside the given range.



	 
	As (X,Y) position of a Component and the Container counts



	 
	- the center of the component if the Center flag it true



	 
	- the upper left corner of the component if the Center flag is false.



	result_text(TextSource), result_text (TemplateSource, ValueSource, ValueSource, ...)
	The operator always returns true. The single parameter version copies the text from the TextSource to the result text of the Hit/Miss condition. The multiple parameter version uses the text from the TemplateSource as template and replaces each occurrence of %<index>$s (where <index> is an integer between 1 and the total number of given ValueSources) by the text snippet obtained from the ValueSource corresponding to the given index. Example: result_text("Sorted text: %1$s %3$s %2%s", "one", "two", "three") writes Sorted text: one three two



	trace_snapshot (TextSource), trace_snapshot (TemplateSource, ValueSource, ValueSource, ...)
	The operator always returns true. The single parameter version traces the text from the TextSource in the trace log and dumps a snapshot of the current task to trace log. The multiple parameter version uses the text from the TemplateSource as template and replaces each occurrence of %<index>$s (where <index> is an integer between 1 and the total number of given ValueSources) by the text snippet obtained from the ValueSource corresponding to the given index. Example: trace_snapshot("Sorted text: %1$s %3$s %2%s", "one", "two", "three") writes Sorted text: one three two



	trace_text(TextSource), trace_text (TemplateSource, ValueSource, ValueSource, ...)
	The operator always returns true. The single parameter version traces the text from the TextSource in the trace log. The multiple parameter version uses the text from the TemplateSource as template and replaces each occurrence of %<index>$s (where <index> is an integer between 1 and the total number of given ValueSources) by the text snippet obtained from the ValueSource corresponding to the given index. Example: trace_text("Sorted text: %1$s %3$s %2%s", "one", "two", "three") writes Sorted text: one three two





The operator matches() is important for scoring string responses (see section 5.3.4), while the result_text() can be used to copy responses to result variables (see section 5.3.10). The operators trace_text() and trace_snapshot() are important for adding user-defined log events to the trace log (see section 4.4.6).


TABLE 10.12: Finite-state machine operators for Task Management






	Operator
	Description





	isCurrentTask(Task)
	Return true if Task is currently executing.



	next_task(Task, Test)
	Switch to the next task. Both parameters are optional, but Task is mandatory if Test is specified.



	 
	- If no parameter is given, switch to the next task. If there is no next task do nothing. (The execution environment selects the ‘next’ task.)



	 
	- If a Task is given, go to this task (in the specified Test if a Test is given). If no such task exists do nothing.



	 
	If the task switch targets to a task that was interrupted before, the execution environment decides whether to initiate a new task instance now or to resume the task interrupted earlier.



	back_task()
	Switch back to the previous task. If there is no previous task do nothing. (The execution environment selects the ‘next’ task.) If the task switch targets to a task that was interrupted before, the execution environment decides whether to initiate a new task instance now or to resume the task interrupted earlier.



	cancel_task()
	Terminate the current task without switching to another task.





Note about execution sequence when used in a state machine transition rule: The system postpones task switches until all other operators in a transition are executed. For multiple task switch operators in a single transition it will only execute the last task switch encountered during the transition. For a transition that leads to a state with a page assigned, the system switches to this page after all actions assigned to the transition are executed. If a task switch appears in the action list of the transition, the page switch is done in the old task since the task switch is postponed as described above.

Table: TABLE 10.13: Finite-state machine operators for Calculation Engine

 


TABLE 10.14: Logical expressions in the domain specific language (DSL)






	Operator
	Description





	calcGetMem(MemIdx)
	Return the rounded integer value of the calculator memory identified by MemoryIndex. Return 0 if the memory is not initialized or not set.



	calcOp(Operation, IntegerParam)
	Performs an operation on the stack of the calculator. The following operations are available:



	 
	- clear: Clears the last operand on top of the stack (if any).



	 
	- clearall: Clears the full stack.



	 
	- equals: computes the result by executing all operations on the operands on the stack.



	 
	- add: pushes the add operation to the stack.



	 
	- subtract: pushes the subtract operation to the stack.



	 
	- multiply: pushes the multiply operation to the stack.



	 
	- divide: pushes the divide operation to the stack.



	 
	- fact: calculates the factorial of the current operand and replaces the current operand by the result.



	 
	- power: calculates the power of the current operand based on the exponent ‘exp’ given as IntegerParam and replaces the current operand on the stack by the result: xexp



	 
	- npower: pushes the power function on the stack (and expects a n-th power integer operand): xy



	 
	- root: calculates the power of the current operand based on the inverse exponent given as IntegerParam and replaces the current operand on the stack by the result: x1/exp



	 
	- nroot: pushes the root function on the stack (and expects a n-th root integer operand): x1/y



	 
	- sin: calculates the sine function of the current operand and replaces the current operand on the stack by the result.



	 
	- cos: calculates the cosine function of the current operand and replaces the current operand on the stack by the result.



	 
	- tan: calculates the tangent function of the current operand and replaces the current operand on the stack by the result.



	 
	- cot: calculates the cotangent function of the current operand and replaces the current operand on the stack by the result.



	 
	- sec: calculates the secant function of the current operand and replaces the current operand on the stack by the result.



	 
	- csc: calculates the cosecant function of the current operand and replaces the current operand on the stack by the result.



	 
	- e: calculates the natural exponentiation (base ‘e’) of the current operand on the stack and replaces it by the result: ex



	 
	- exp: calculates the exponentiation of the current operand on the stack with the base given as IntegerParam and replaces it by the result: basex



	 
	- ln: calculates the natural logarithm (base ‘e’) of the current operand on the stack and replaces it by the result: ln



	 
	- log: calculates the logarithm of the current operand on the stack with the base given as IntegerParam and replaces it by the result: logbase



	 
	- invmult: calculates the inverse of the current operand, i.e. divides 1 by the current operand: 1/x



	 
	- invpower: pushes the inverse power function, i.e. n-th function on the stack (and expects a n-th power integer operand > 0): logyx



	 
	- leftbr: pushes a left (opening) bracket on the stack as a marker for intermediate calculation.



	 
	- rightbr: pushes a right (closing) bracket on the stack and calculates the result of the expression between the corresponding left bracket and replaces it by pushing the result on the stack.



	 
	- msave: saves the current operand on top of the stack into the memory referred to by the memory index given as IntegerParam.



	 
	- mread: reads the memory value referred to by the memory index given as IntegerParam and pushes it on top of the stack (or replaces the current operand).



	 
	- mclear: clears the memory referred to by the memory index given as IntegerParam (i.e. sets it to 0).



	 
	- madd: adds the current operand on top of the stack to the referred memory value and saves the result in the referred memory.



	 
	- msubtract: subtracts the current operand on top of the stack from the referred memory value and saves the result in the referred memory.



	calcOpnd(Operation, Digits)
	Modifies the current operand on the stack of the calculator. The following Operations are available (the parameter Digits – a non negative integer – may be optional):



	 
	- add: adds Digits at the end of the current operand.



	 
	- decimal: sets the decimal place and adds Digits at the end of the current operand (if specified).



	 
	- back: removes the last digit (or decimal place) from the current operand (if any).



	 
	- invadd: multiplies the current operand by -1 (additive inverse). Note that more digits can be added to the current operator afterwards.



	calcSettings (Parameter, Parameter, ...)
	Initializes the calculator and sets Parameters. This must be done at the beginning, before any calculation is started, otherwise it has no effect. The following Parameters are available:



	 
	- angle: the unit representation of angles: degree (default) or radian.



	 
	- displayWidth: the number of digits (> 0) which can be used for external representation (default 10).



	 
	- includeOperandInHistory: displays current operand in history, if set to true (default true).



	 
	- withThousandSeparator: thousands separators are not displayed, if set to false (default true).



	 
	- scale: the number of digits (> 0) after the decimal place, corresponds to the precision used for internal calculations, rounded half away from zero when required (default 0).












	Operator
	Description





	<opnd1> and <opnd2>
	Binary operator for logical ‘and’, i.e. returns true if both operands evaluate to true.



	<opnd1> or <opnd2>
	Binary operator for logical ‘or’, i.e. returns true if at least one operand evaluates to true.



	not <opnd>
	Unary operator for logical ‘not’, i.e. returns true if the operand evaluates to false.



	ifthenelse (Condition, Then, Else)
	Return the value of Then if Condition evaluates to true, otherwise return the value of Else.





Important: The combination of logical operators requires bracketing (see section 4.1.3).


TABLE 10.15: Comparisons in the domain specific language (DSL)






	Operator
	Description





	<opnd1> == <opnd2>
	Compares two text or numerical values. If both operands evaluate to an integer, a numerical comparison is done. If both operands evaluate to a text, a text comparison is done. Otherwise the operator returns false.



	<opnd1> <> <opnd2>
	Compares two text or numerical values. If both operands evaluate to an integer, a numerical comparison is done. If both operands evaluate to a text, a text comparison is done. Otherwise the operator returns false.



	<opnd1> < <opnd2>
	Compares numerical values. If both operands evaluate to an integer (or a text that represents a numerical value), a numerical comparison is done. Otherwise the operator returns false.



	<opnd1> <= <opnd2>
	Compares numerical values. If both operands evaluate to an integer (or a text that represents a numerical value), a numerical comparison is done. Otherwise the operator returns false.



	<opnd1> > <opnd2>
	Compares numerical values. If both operands evaluate to an integer (or a text that represents a numerical value), a numerical comparison is done. Otherwise the operator returns false.



	<opnd1> >= <opnd2>
	Compares numerical values. If both operands evaluate to an integer (or a text that represents a numerical value), a numerical comparison is done. Otherwise the operator returns false.






TABLE 10.16: Arithmetics in the domain specific language (DSL)






	Operator
	Description





	<opnd1> + <opnd2>
	Arithmetic add operation.



	<opnd1> - <opnd2>
	Arithmetic subtract operation.



	<opnd1> * <opnd2>
	Arithmetic multiply operation.



	<opnd1> / <opnd2>
	Arithmetic divide operation.



	<opnd1> % <opnd2>
	Arithmetic remainder operation: Calculate the remainder when dividing the first operand by the second.






TABLE 10.17: Miscellaneous operators in the domain specific language (DSL)






	Operator
	Description





	openDialog(Page, X, Y)
	Open the given Page as dialog at the position (X,Y).



	setGlobalProperty (Property, Value)
	Set the given global Property to the given Value. The following properties can be used:



	 
	- highlight_color: Modifies the current higlighting color to Value. The Value is interpreted as RGB color integer value specified as plain positive or negative integer or as hexadecimal value (prepended with 0x). Invalid values are ignored silently.



	recommend(Parameter, Parameter, ...)
	Highlight recommended Links, Tasks and Tests. Each parameter specifies a test name, a task name and the User Defined Id Path of a Link component separated by dots: <TestName>.<TaskName>.<UserDefinedIdPath> Example: recommend(myTest.someTask.myLink, myTest.anotherTask.someLink) To recommend a task without a specific Link component use an asterisk (*) as value for the User Defined Id Path like this: myTest.someTask.* To recommend a test without a specific task use asterisks for task and User Defined Id Path like this: myTest.*.* For User Defined Ids that are not defined in the current item, the ItemBuilder assumes that their components are part of an XPage.









10.3 Regular Expression Symbols


TABLE 10.18: Regular Expression Symbols






	Symbols
	Description of Regular Expression





	.
	Matches any character except line breaks. Equivalent to [^\n\r].



	^
	Beginning. Matches the beginning of a string3 or of a line.



	$
	End. Matches the end of the string or of the line.



	()
	Capturing group. Grouping multiple expressions.



	{}
	Quantifier. Defines the number of times that the character in front of the opening bracket occurs



	{x,y}
	x = minimum, y = maximum number of repetitions.



	[]
	Character set. Matches any character in the set.



	[^]
	Negated set. Match any character that is not in the set.



	\|
	Alternation. Matches the expression before or after the \|.



	?
	Optional. Match between 0 and 1 of the preceding token.



	+
	Match 1 or more of the preceding token.



	*
	Match 0 or more of the preceding token.



	.*
	Set the preliminary or later string part free.



	\\
	Matches the character after the \\.



	?:
	Non-capturing Group. Groups multiple tokens together without creating a capture group.



	\\\\
	Matches a backslash.



	[\\s\\S]
	Match any character.



	[a-z]
	Range. Matches a character in the range a to z.



	[A-Z 0-9]
	Matches only upper case letters, blanks and digits.



	[a-zA-Z]?
	Matches single characters (only one character or empty string).



	[^a-z]
	Matches all characters except lower case letters.



	[0-9]
	Matches any character in the range 0 to 9.



	\\d
	Digit. Matches any digit character, equals [0-9].



	\\D
	Not digit. Matches any character that is not a digit character, equals [^0-9].



	\\s
	Whitespace. Matches any whitespace character (spaces, tabs, line breakes).



	\\S
	Not whitespace. Matches any character that is not a whitespace character.



	\\w
	Word. Matches any word character (alphanumeric), equals [a-zA-Z 0-9].



	\\W
	Not word. Matches any character that is not a word character (alphanumeric), equals [^a-zA-Z0-9].



	\\n
	Line break.







10.4 Technical Configuration

By default, the configuration of the CBA ItemBuilder provided in the cba-itembuilder.ini activates the following features:


	State-Machine Degubber (-DAllowFSMDebugging=true)

	Trace Debugger (-DAllowTraceDebugging=true)

	Scoring Viewer (-DAllowScoreDebugging=true)










	Parameter
	Description





	-DAllowFSMDebugging=true
	Allows opening the Finite-State Machine (FSM) Viewer in the preview (using Ctrl+M) for debugging the FSM state. Only intended for item development.



	-DAllowTraceDebugging=true
	Allows opening the Trace Event Viewer in the preview (using Ctrl+T) for testing and debugging the logging. Only intended for item development.



	-DAllowScoreDebugging=true
	Allows opening the Scoring Viewer in the preview (using Ctrl+S) for debugging the implemented scoring. Only intended for item development.





Additional features can be de-activated by modifying the cba-itembuilder.ini file:








	Parameter
	Description





	-Dfile.encoding=UTF-8
	Support for non-Western European languages.



	-DsimpleTextEditorWrap=yes
	Automatic word wrap in the Simple Text Editor (for SimpleTextFields and InputFields).



	-DTraceHighlightedText=true
	Traces the highlighted texts (start, end position and text).



	-DTraceVerbose=true
	Shows Trace Events on console and log files.



	-DalwaysGenerateAtSave=yes
	Forces automatic generation of the project before saving (should be set to yes).



	-DdefaultItemHeight=NNN
	Default CBA Item height in pixel (NNN), 715 pixel if none is defined.





[Issue 7]
-DdefaultItemWidth=NNN | Default CBA Item width in pixel (NNN). 722 pixel if none is defined. -DDefinedOrdering=false | Does not apply the defined ordering for overlapping graphical components. Only used for backward compatibility for the old style undefined ordering (applied before rel. 3.4.0). -DisTreeViewShowsAll=no | Shows all components in the Component View (to be used only for debugging purposes). -Donline.help.update.site= | Default path where the bundle to update the CBA Item Builder help feature is located. -DPreloadImages=true | Preloads images of all image/IconValueDisplays at startup of an item, so that value changes are displayed without delay at runtime (default= false). -DPreloadTextFields | TextFields are pre-loaded when the item is initialized the first time. The preloaded TextFields will render much faster at first display time. This is only supported for the browsers Firefox and Internet Explorer due to technical limitations in other browsers (for example Chrome). -Djava.util.Arrays.useLegacyMergeSort=true | Required MergeSort algorithm. -Declipse.consoleLog=true | TODO -Djetty.port=7070 | Port used by the internal servlet engine Jetty for previewing items. -Donline.help.update.site= | TODO -Dosgi.Framework.extensions=org.eclipse.equinox.weaving.hook | TODO -Dsun.rmi.dgc.client.gcInterval=3600000 | TODO -D defaultItemHeigh= | Default presentation size (height) -D defaultItemWidth= | Default presentation size (width)



10.5 CBA ItemBuilder Versions




TABLE 10.19: CBA ItemBuilder Versions (with React-based runtime)







	Version
	Date
	Links





	10.0
	2023-11-06
	Runtime, JSON Schema, EE4Basic, Reference



	9.9
	2023-03-23
	Runtime, JSON Schema, EE4Basic, Reference



	9.8
	2022-09-22
	Runtime, JSON Schema



	9.7
	2022-04-20
	Runtime, JSON Schema



	9.6
	2021-12-16
	Runtime, JSON Schema



	9.5
	2021-08-19
	Runtime, JSON Schema



	9.4
	2021-05-28
	Runtime, JSON Schema



	9.3
	2021-04-08
	Runtime, JSON Schema



	9.2
	2020-12-18
	Runtime, JSON Schema



	9.1
	2020-10-01
	Runtime, JSON Schema



	9.0
	2020-06-17
	Runtime, JSON Schema



	…
	…
	Previous versions not listed here







10.6 Component Register



The following Table 10.20 contains references for all components of the CBA ItemBuilder, indicating where in this manual the components are described (column Reference), which page type is required to use the component (column Page) and which containers allow using the component (column Container).



TABLE 10.20: Register of all Components








	Component
	Page
	Container
	Reference





	Audio
	Simple
	Panel
	3.10.3



	BackButton
	Web Browser
	WebBrowserToolbar
	3.13.2



	Bookmkark
	Web Browser
	WebBrowserToolbar
	3.13.2



	Button
	Simple, Web Browser
	Panel, WebBrowserToolbar, ImageMap
	3.11.2



	ChildArea
	Tabfolder, Taskbar
	TabfolderFrame, TaskbarFrame
	3.13.1



	Checkbox
	Simple
	Panel
	3.9.3



	ComboBox
	Simple
	Panel
	3.9.5



	ExternalPageFrame
	Simple
	Panel
	3.14.1



	ForwaredButton
	Web Browser
	WebBrowserToolbar
	3.13.2



	Frame
	Simple
	Page
	3.5.1



	HomeButton
	Web Browser
	WebBrowserToolbar
	3.13.2



	HTMLTextField
	Simple, Web Browser
	Panel, WebBrowserToolbar, ImageMap
	3.8.2



	InputField
	Simple
	Panel
	3.9.1



	ImageArea
	Simple
	ImageMap
	3.10.2



	ImageField
	Simple, Web Browser
	Panel, WebBrowserToolbar
	3.10.2



	ImageMap
	Simple
	Panel
	3.9.10



	ImageTextField
	Simple
	ImageMap
	3.9.10



	Line Horizontal
	Simple, Web Browser
	Panel, WebBrowserToolbar
	3.7.5



	Line Vertical
	Simple, Web Browser
	Panel, WebBrowserToolbar
	3.7.5



	Link
	Simple
	Panel
	3.11.1



	List
	Simple
	Panel
	3.9.5



	MapBasedVariableDisplay
	Simple
	Panel
	4.2.5



	MenuBar
	Simple, Web Browser
	Panel, WebBrowserToolbar
	3.9.7



	Menue
	Simple, Web Browser
	MenuBar
	3.9.7



	RadioButton
	Simple
	RadioButtonGroup
	3.9.2



	RadioButtonGroup
	Simple
	Panel
	3.9.2



	Rectangle
	Simple
	Panel
	3.7.5



	SimpleTextField
	Simple
	Panel
	3.8.1



	SingleLineInputField
	Simple, Web Browser
	Panel, WebBrowserToolbar
	3.9.1



	TabButton
	Tabfolder
	TabfolderGroup
	3.13.1



	TabfolderFrame
	Tabfolder
	Page
	3.13.1



	TabfolderGroup
	Tabfolder
	TabfolderFrame
	3.13.1



	Table
	Simple
	Panel
	3.9.8



	TableCellEditor
	Simple
	Panel
	3.9.8



	TaskbarButton
	Taskbar
	TaskbarGroup
	3.13.1



	TaskbarFrame
	Taskbar
	Page
	3.13.1



	TaskbarGroup
	Taskbar
	TaskbarFrame
	3.13.1



	TaskbarStartButton
	Taskbar
	TaskbarGroup
	3.13.1



	TextField
	Simple, Web Browser
	Panel, WebBrowserToolbar
	3.8.3



	Tree
	Simple
	Panel
	3.9.9



	TreeView
	Simple
	Panel
	3.9.9



	TreeChildArea
	Simple
	Panel
	3.9.9



	Timer
	Simple
	Panel
	4.4.10



	PageArea
	Simple
	Frame
	3.5.4



	Panel
	Simple
	Frame, Panel
	3.5.2



	Rectangle
	Simple, Web Browser
	Panel, WebBrowserToolbar
	3.7.5



	ScaleValueInput
	Simple
	Panel
	4.2.2



	SpinnerValueInput
	Simple
	Panel
	4.2.2



	ValueInput
	Simple
	Panel
	4.2.2



	VariableValueDisplay
	Simple
	Panel
	4.2.5



	Video
	Simple
	Panel
	3.10.3



	VideoTextArea
	Simple
	Video
	3.10.3



	WebBrowserFrame
	Web Browser
	Page
	3.13.2



	WebBrowserToolbar
	Web Browser
	WebBrowserFrame, WebBrowserToolbar
	3.13.2



	WebChildArea
	Web Browser
	WebBrowserFrame
	3.13.2



	WebChildFrame
	Web Child
	Page
	3.13.2









10.7 Documenetation Log Events



During the delivery of assessment components created with the CBA ItemBuilder, log events are generated, which can be collected and stored by the software used for test deployment. The log events are delivered using the TaskPlayer API (see section 7.7) as JSON objects. The deployment software is responsible for storing and probably transforming the format of the data provided in log events. Raw Log Events are generated by default (see section 2.8.1). The documentation of the different Raw Log Events provided by CBA ItemBuilder is done separately for events of different components-categories:


	Raw Log Events for basic components (table 10.21): Click events for buttons and links, page change and scroll events

	Raw Log Events for components that support selection (table 10.22): Log events that occur when components in the test are clicked or selected

	Raw Log Events for answer-changes (table 10.23): Log events, which can indicate the change of a response

	Raw Log Events for text entry components (table 10.24): Log events for selection and modification of components for text entry

	Raw Log Events for value inputs (table 10.25): Log events for value input components

	Raw Log Events for audio an video components (table 10.26): Log events for player components used to embed media



	Raw Log Events for tree components (table 10.27): Log events for the CBA ItemBuilder tree component

	Raw Log Events for advanced components (table 10.28): Log events for advanced components

	Raw Log Events for text highlighting (table 10.29): Log events for the text highlighting in TextFields

	Raw Log Events for test deployment (table 10.30): Log events for the test deployment. Note that the deployment software can provide additional events.



As described in section 2.8.4 log data can be stored in different formats, such as the Universal Log Format, Flat and Sparse Log Data Tables or as eXtensible Event Stream (XES). All formats use the The event name is either contained as a column (flat and sparse log data table) or corresponds to the table in which the log data of this event type is stored (universal log format).

The different tables list the events with different names (event type), give a short description, and name the central event-specific data transmitted by the events. Optional attributes are specially marked. Beyond the documented attributes, log events often provide the following additional attributes:


	indexPath: The index path of the component instance.

	userDefIdPath: The user defined ID path of the component instance.

	clientX/clientY/pageX/pageY/screenX/screenY: The position of the element in different metrics.



These attributes’ values reproduce properties of the affected components and can be used to map the affected parts of the instrument (beyond the UserDefinedID).1


[image: Example item illustrating *Raw Log-Events* ([html](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/UnitTestLogging/Task01/)|[ib](https://kroehne.github.io/CBAItemBuilderBook/items/10_00/UnitTestLogging.zip)).]

FIGURE 10.1: Example item illustrating Raw Log-Events (html|ib).






TABLE 10.21: Log events for basic elements







	Event Name
	Description
	Event-Specific Data





	Button
	Button is pressed.
	UserDefId of the button, oldSelected (was the button selected before), subtype1^1 (type of the button)



	Link
	Link is hit.
	UserDefId of the Link, oldSelected (was the Link selected before) 



	ValueDisplay
	Value display is selected.
	UserDefId of ValueDisplay, displayType (type of the display, either number, text, image icon, audio or video)



	EmbeddedLink
	Embedded link is selected.
	indexPath (Index path of the embedded link), no UserDefId 



	ScrollbarMove
	Scrollbar slider moved.
	userDefId of the component, orientation (either horizontal or vertical), direction (either down, up, left, or right), horizontalScroll (position of the horizontal slider at the end of the move in percent of total size, 0% is at the left end, 100% is at the right end), verticalScroll (position of the vertical slider at the end of the move in percent of total size, 0% is at the top, 100% is at the bottom)



	PageSwitchTopLevel
	A page switch in a top level page area occurs.
	pageAreaType (type of the page area, either main, dialog or modal), pageAreaName (name of the page area), newPageName (name of the page displayed in the page area), position1^1 (X/Y)



	PageSwitchEmbedded
	A page switch in an embedding component instance occurs.
	userDefId of the component, newPageName (name of the new page embedded in the component instance), tab1^1 (name of the target tab in the embedding component instance), historyMove1^1 (history move operation that triggered the page switch, either home, back, or forward)





1^1 Optional event-specific data.


TABLE 10.22: Log events for component selection







	Event Name
	Description
	Event-Specific Data





	SimpleTextField
	Simple text field is selected.
	UserDefId of the SimpleTextField



	ImageField
	Image field is selected.
	UserDefId of the ImageField



	ExternalPageFrame
	An external page frame is selected.
	UserDefId of the ExternalPageFrame



	Panel
	Panel is selected.
	UserDefId of the Panel



	Container
	Container is selected.
	UserDefId of the Container



	RegionMap
	Region map is selected.
	UserDefId of RegionMap



	PageArea
	Page area is selected.
	UserDefId of PageArea






TABLE 10.23: Log events for answer-changes







	Event Name
	Description
	Event-Specific Data





	Checkbox
	Checkbox is pressed.
	UserDefId of the Checkbox, oldSelected (was the Checkbox selected before)



	RadioButton
	RadioButton is pressed.
	UserDefId of the RadioButton, oldSelected (was the RadioButton selected before)



	Combobox
	Combo box selected entry changes. The combox box will not trace an event if the user selects the currently selected item once more.
	UserDefId of the Combobox, oldSelected (index of the previously selected combo box item), oldSelectedUserDefId (user defined ID of the previously selected item), newSelected (index of the now selected combo box item), newSelectedUserDefId (user defined ID of the now selected item)



	ImageArea
	Image area is selected.
	UserDefId of ImageArea, oldSelected (was the ImageArea selected before) 



	ImageTextField
	Image text field is selected.
	UserDefId of ImageTextField, oldSelected (was the ImageTextField selected before) 



	RichText
	Rich text field is selected.
	UserDefId of RichText, oldSelected (was the RichText selected before) 





1^1 Optional event-specific data.


TABLE 10.24: Log events for text entry components







	Event Name
	Description
	Event-Specific Data





	SingleLineInputField
	Single line input field is selected.
	UserDefId of SingleLineInputField, currentTextValue (text value of the input field)



	SingleLineInputFieldModified
	Single line input field receives modification request.
	UserDefId of SingleLineInputFieldModified, oldTextValue (old text value of the input field), newTextValue (new text value of the input field), origin (origin of the modification request, either keyboard or cutAndPaste), validationPattern1^1 (validation pattern configured for the field), invalidTextValue1^1 (text value that was rejected by the pattern validation)



	InputField
	Input field is selected.
	UserDefId of InputField, currentTextValue (text value of the input field)



	InputFieldModified
	Input field receives modification request.
	UserDefId of InputFieldModified, oldTextValue (old text value of the input field), newTextValue (new text value of the input field), origin (origin of the modification request, either keyboard or cutAndPaste), validationPattern1^1 (validation pattern configured for the field), invalidTextValue1^1 (text value that was rejected by the pattern validation)



	OperatorSetTextValue
	Operator sets text value of input element.
	UserDefId of component, oldTextValue (old text value of the input field), newTextValue (new text value of the input field)





1^1 Optional event-specific data.


TABLE 10.25: Log events for value inputs







	Event Name
	Description
	Event-Specific Data





	ValueInput
	Variable value input field is selected.
	UserDefId of ValueInput



	ValueInputModified
	Variable value Input field is modified.
	UserDefId of ValueInput, newValue (new value for the variable)



	ScaleValueInput
	Scale value input field is selected.
	UserDefId of ScaleValueInput



	SpinnerValueInput
	Spinner value input field is selected.
	UserDefId of SpinnerValueInput






TABLE 10.26: Log events for audio/video components







	Event Name
	Description
	Event-Specific Data





	AudioPlayer
	Audio player receives click with hidden controls.
	UserDefId of AudioPlayer



	AudioPlayerControl
	Audio player starts/pauses/ends playing.
	UserDefId of AudioPlayerControl, operation (either play, pause, stop, or ended), maxPlay (maximum number of plays allowed), currentPlayNo (number of the current play), automaticStart (true if automatic start), hideControls (true if controls are hidden), volumeLevel (current volume level in percent), isStatemachineTriggered (true if triggered by FSM)



	VideoPlayer
	Video player receives click with hidden controls.
	UserDefId of VideoPlayer



	VideoPlayerControl
	Video player starts/pauses/ends playing.
	UserDefId of AudioPlayerControl, operation (either play, pause, stop, or ended), maxPlay (maximum number of plays allowed), currentPlayNo (number of the current play), automaticStart (true if automatic start), hideControls (true if controls are hidden), volumeLevel (current volume level in percent), isStatemachineTriggered (true if triggered by FSM)






TABLE 10.27: Log events for tree components







	Event Name
	Description
	Event-Specific Data





	TreeNode
	Operation on node in tree.
	UserDefId of the tree, operation (type of operation, either emptySelection, selection, doubleClick, expandNode, collapseNode, new, delete, rename, cut, copy, paste, drag, or drop), nodePathId1^1 (node path id of selected node), nodeType1^1 (type of selected node), nodeName (name of selected node), oldValue1^1 (for operation=rename only: old column value), newValue1^1 (for operation=rename only: new column value), columnName1^1 (for operation=rename only: name of column changed by the operation), triggeredEvent1^1 (for operation=delete only: name of the FSM event triggered instead of executing the operation)



	TreeViewNode
	Operation on node in tree view.
	UserDefId of the tree, operation (type of operation, either emptySelection, selection, doubleClick, expandNode, collapseNode, new, delete, rename, cut, copy, paste, drag, or drop), nodePathId1^1 (node path id of selected node), nodeType1^1 (type of selected node), nodeName (name of selected node), oldValue1^1 (for operation=rename only: old column value), newValue1^1 (for operation=rename only: new column value), columnName1^1 (for operation=rename only: name of column changed by the operation), triggeredEvent1^1 (for operation=delete only: name of the FSM event triggered instead of executing the operation)



	TreeViewSort
	Sort by column operation in tree view.
	UserDefId of the tree, sortDirection (direction of the sorting applied to the rows, either ascending, descending, or none), columnName1^1 (name of the column to sort rows by), columnIndex1^1 (index of the column to sort rows by)



	TreeChildArea
	Tree child area receives click
	UserDefId of the tree





1^1 Optional event-specific data.


TABLE 10.28: Log events for advanced components







	Event Name
	Description
	Event-Specific Data





	TableCell
	Table cell is selected.
	UserDefId of the TableCell, tableUserDefId (userDefId of the table containing the cell), row (index of the row of the cell), column (index of the column of the cell), oldSelected (was the TableCell selected before) 



	TableCellModified
	Table cell is modified.
	UserDefId of the TableCell, tableUserDefId (userDefId of the table containing the cell), row (index of the row of the cell), column (index of the column of the cell), cellType (text combo or formula), oldValue (old value of the cell), newValue (new value of the cell), oldEvaluatedValue (evaluated value of the old formula), newEvaluatedValue (evaluated value of the new formula), errorInFormula (error value returned by the formula evaluation for the new formula)



	BrowserTab
	Switch the current Browser tab. Event is raised by selecting the tab.
	UserDefId of the web child area component, tab (name of the selected tab), page (name of the page displayed in the selected tab)



	DragAndDropReceive
	Drag & drop operation completed.
	senderUserDefId1^1 (user defined ID of the sending component), receiverUserDefId1^1 (user defined ID of the receiving component), startPosition (X/Y), endPosition (X/Y), sendingType, receivingType, operation 



	JavaScriptInjected
	Some external JavaScript code triggered this entry in the trace log.
	userDefId1^1 (as specified by the JavaScript code), origin (origin URL of the event triggered by the JavaScript code), message1^1 (as specified by the JavaScript code)



	CutCopyPaste
	A cut/copy/paste command was triggered.
	contentUserDefId1^1 (ser defined ID of the component providing/receiving the clipboard content), triggerUserDefId1^1 (user defined ID of the triggering component), triggerType (type of the triggering action, either button, contextMenu, or keyboard), operation (operation triggered, either cut, copy, or paste), content1^1 (xchanged clipboard content, not given for denied requests), isPerformed1^1 (indicates whether the requested operation was performed or denied)



	Bookmark
	A bookmark related command triggered.
	ownerUserDefId1^1 (user defined ID of the component owning the bookmarks), triggerUserDefId1^1 (user defined ID of the triggering component), triggerType (type of the triggering action, either button or contextMenu), operation (operation triggered, either add, drop, select, or manage), pageName1^1 (name of the target page of the bookmark), pageUrl1^1 (URL of the target page of the bookmark), tab1^1 (tab in the browser targeted by the bookmark, for tabbed browsers only)



	OperatorTraceText
	Operator trace_text includes text in trace log.
	text (evaluated text from the operator arguments)



	OperatorTraceSnapshot
	Operator trace_snapshot includes text in trace log.
	text (evaluated text from the operator arguments)





1^1 Optional event-specific data.


TABLE 10.29: Log events for text highlighting







	Event Name
	Description
	Event-Specific Data





	RichTextHighlight
	Highlighted area in rich text field changes.
	UserDefId of the RichTextHighlight, oldSelections (list), newSelections (list)





Event-specific data provided in the list of oldSelections and newSelections have the following attributes:


	startKey: The ID of the block (i.e. the row) where the area starts.

	startOffset: The position in the block (i.e. in the row) where the area starts.

	endKey: The ID of the block (i.e. the row) where the are ends.

	endOffset: The position in the block (i.e. in the row) where the area ends.




TABLE 10.30: Log events for test deployment







	Event Name
	Description
	Event-Specific Data





	TasksViewVisible
	The tasks view becomes visible. The view showing the task(s) becomes visible for the test user.
	Settings for running the task



	UserLogin
	A test-taker logged in.
	User name, information about the browser used to display the test



	ItemSwitch
	An item switch occurs.
	Configuration of the new item



	TaskSwitch
	A task switch occurs.
	oldTask (name of the interrupted tas), oldItem (name of the item containing the interrupted task), oldTest (name of the test of the interrupted task), newTask (name of the installed task), newItem (name of the item containing the installed task), newTest (name of the test of the installed task), taskResult (results for the named evaluations for the interrupted task)



	HeaderButton
	One of the header buttons provided by the viewer was pressed.
	index (index of the header buttons in the header buttons list)



	NavigationButton
	One of the task/test navigation buttons provided by the viewer was pressed.
	navigationType (type of the navigation button, either test or task), navigationTarget (name of the test or task to navigate to)



	RuntimeController
	The controlling environment triggered an action.
	actionType (triggered action), details (parameters specifying the details of the triggered action)



	ApplicationFullScreen
	A fullscreen related command triggers.
	type (type of operation triggered, either enterFullscreen or exitFullscreen), alternateStateDuration (duration in seconds since the last visibility change)



	ApplicationVisibility
	Application visibility changed.
	type (type of change, either pageHidden or pageShown), alternateStateDuration (duration in seconds since the last visibility change)



	PauseResume
	Test run was paused or resumed after pause.
	type (type of action, either pause or resume)





1^1 Optional event-specific data.










	Two additional events are not included in the tables: The event Snapshot provides a snapshot (i.e., a restoring point for the current task) and the vent Recommend is currently marked as obsolete.↩︎








  
  
  ch015.xhtml
  
  




References




Alagar, Vangalur S., and K. Periyasamy. 2011. Specification of Software Systems. 2nd ed. Texts in Computer Science. New York: Springer.



Attali, Yigal. 2011. “Immediate Feedback and Opportunity to Revise Answers: Application of a Graded Response IRT Model.” Applied Psychological Measurement 35 (6): 472–79. https://doi.org/10.1177/0146621610381755.



Attali, Yigal, Andrew Runge, Geoffrey T. LaFlair, Kevin Yancey, Sarah Goodwin, Yena Park, and Alina A. von Davier. 2022. “The Interactive Reading Task: Transformer-based Automatic Item Generation.” Frontiers in Artificial Intelligence 5 (July): 903077. https://doi.org/10.3389/frai.2022.903077.



Baarsen, Jeroen Van. 2014. GitLab Cookbook.



Baghaei, Purya, and Mona Tabatabaee. 2015. “The C-Test: An Integrative Measure of Crystallized Intelligence.” Journal of Intelligence 3 (2): 46–58. https://doi.org/10.3390/jintelligence3020046.



Bartram, Dave. 2005. “Testing on the Internet: Issues, Challenges and Opportunities in the Field of Occupational Assessment.” In Computer-Based Testing and the Internet, edited by Dave Bartram and Ronald K. Hambleton, 13–37. West Sussex, England: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470712993.ch1.



Bartram, Dave, and Ronald K. Hambleton, eds. 2006. Computer-Based Testing and the Internet: Issues and Advances. Chichester: Wiley.



Becker, Benjamin, Dries Debeer, Karoline A. Sachse, and Sebastian Weirich. 2021. “Automated Test Assembly in R: The eatATA Package.” Psych 3 (2): 96–112. https://doi.org/10.3390/psych3020010.



Bengs, Daniel, Ulf Kroehne, and Ulf Brefeld. 2021. “Simultaneous Constrained Adaptive Item Selection for Group-Based Testing.” Journal of Educational Measurement 58 (2): 236–61. https://doi.org/10.1111/jedm.12285.



Bennett, Randy Elliot, James Braswell, Andreas Oranje, Brent Sandene, Bruce Kaplan, and Fred Yan. 2008. “Does It Matter If I Take My Mathematics Test on Computer? A Second Empirical Study of Mode Effects in NAEP,” 39.



Böckenholt, Ulf, and Thorsten Meiser. 2017. “Response Style Analysis with Threshold and Multi-Process IRT Models: A Review and Tutorial.” British Journal of Mathematical and Statistical Psychology 70 (1): 159–81. https://doi.org/10.1111/bmsp.12086.



Bolt, Daniel. 2016. “Item Response Models for CBT.” In Technology and Testing: Improving Educational and Psychological Measurement, edited by Fritz Drasgow, 305. Routledge.



Born, Sebastian, and Andreas Frey. 2017. “Heuristic Constraint Management Methods in Multidimensional Adaptive Testing.” Educational and Psychological Measurement 77 (2): 241–62. https://doi.org/10.1177/0013164416643744.



Bridgeman, Brent. 2009. “Experiences from Large-Scale Computer-Based Testing in the USA.” The Transition to Computer-Based Assessment 39.



Bryant, William. 2017. “Developing a Strategy for Using Technology-Enhanced Items in Large-Scale Standardized Tests.” https://doi.org/10.7275/70YB-DJ34.



Buchanan, Tom. 2002. “Online Assessment: Desirable or Dangerous?” Professional Psychology: Research and Practice 33 (2): 148–54. https://doi.org/10.1037/0735-7028.33.2.148.



Buerger, Sarah, Ulf Kroehne, and Frank Goldhammer. 2016. “The Transition to Computer-Based Testing in Large-Scale Assessments: Investigating (Partial) Measurement Invariance Between Modes.”



Buerger, Sarah, Ulf Kroehne, Carmen Koehler, and Frank Goldhammer. 2019. “What Makes the Difference? The Impact of Item Properties on Mode Effects in Reading Assessments.” Studies in Educational Evaluation 62: 1–9. https://doi.org/10.1016/j.stueduc.2019.04.005.



Bugbee, Alan C. 1996. “The Equivalence of Paper-and-Pencil and Computer-Based Testing.” Journal of Research on Computing in Education 28 (3): 282.



Christensen, Garret S., Jeremy Freese, and Edward Miguel. 2019. Transparent and Reproducible Social Science Research: How to Do Open Science. Oakland, California: University of California Press.



Clariana, Roy, and Patricia Wallace. 2002. “Paperbased Versus Computerbased Assessment: Key Factors Associated with the Test Mode Effect.” British Journal of Educational Technology 33 (5): 593–602. https://doi.org/10.1111/1467-8535.00294.



Cochran, Gary L., Jennifer A. Foster, Donald G. Klepser, Paul P. Dobesh, and Allison M. Dering-Anderson. 2020. “The Impact of Eliminating Backward Navigation on Computerized Examination Scores and Completion Time.” American Journal of Pharmaceutical Education 84 (12): ajpe8034. https://doi.org/10.5688/ajpe8034.



Dann, Peter L., Sidney H. Irvine, and Janet M. Collis, eds. 1991. Advances in Computer-Based Human Assessment. Dordrecht: Springer Science+Business Media.



Das, Bidyut, Mukta Majumder, Santanu Phadikar, and Arif Ahmed Sekh. 2021. “Automatic Question Generation and Answer Assessment: A Survey.” Research and Practice in Technology Enhanced Learning 16 (1): 5. https://doi.org/10.1186/s41039-021-00151-1.



Deribo, Tobias, Ulf Kroehne, and Frank Goldhammer. 2021. “Model-Based Treatment of Rapid Guessing.” Journal of Educational Measurement 58 (2): 281–303. https://doi.org/10.1111/jedm.12290.



Diao, Q., and Wim J. van der Linden. 2011. “Automated Test Assembly Using Lp_Solve Version 5.5 in R.” Applied Psychological Measurement 35 (5): 398–409. https://doi.org/10.1177/0146621610392211.



DiBattista, David. 2013. “The Immediate Feedback Assessment Technique: A Learner-centered Multiple-choice Response Form.” Canadian Journal of Higher Education 35 (4): 111–31. https://doi.org/10.47678/cjhe.v35i4.184475.



DiCerbo, Kristen, Emily Lai, and Ventura Matthew. 2020. “Assessment Design with Automated Scoring in Mind.” In Handbook of Automated Scoring, 29–48. Chapman and Hall/CRC.



Dirk, Judith, Gesa Katharina Kratzsch, John P. Prindle, Ulf Kroehne, Frank Goldhammer, and Florian Schmiedek. 2017. “Paper-Based Assessment of the Effects of Aging on Response Time: A Diffusion Model Analysis.” Journal of Intelligence 5 (2): 12. https://doi.org/10.3390/jintelligence5020012.



Downing, Steven M., and Thomas M. Haladyna, eds. 2006. Handbook of Test Development. Mahwah, N.J: L. Erlbaum.



Ebel, Robert L. 1953. “The Use of Item Response Time Measurements in the Construction of Educational Achievement Tests.” Educational and Psychological Measurement 13 (3): 391–401. https://doi.org/10.1177/001316445301300303.



Embretson, Susan, and Steven P Reise. 2013. Item Response Theory. Psychology Press.



Embretson, Susan, and Xiangdong Yang. 2006. “Automatic Item Generation and Cognitive Psychology.” In Handbook of Statistics, 26:747–68. Elsevier. https://doi.org/10.1016/S0169-7161(06)26023-1.



Feskens, Remco, Jean-Paul Fox, and Robert Zwitser. 2019. “Differential Item Functioning in PISA Due to Mode Effects.” In Theoretical and Practical Advances in Computer-Based Educational Measurement, edited by Bernard P. Veldkamp and Cor Sluijter, 231–47. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-18480-3_12.



Fink, Aron, Sebastian Born, Christian Spoden, and Andreas Frey. 2018. “A Continuous Calibration Strategy for Computerized Adaptive Testing.” Psychological Test and Assessment Modeling 3 (60): 327–46.



Finn, Bridgid, and Janet Metcalfe. 2010. “Scaffolding Feedback to Maximize Long-Term Error Correction.” Memory & Cognition 38 (7): 951–61. https://doi.org/10.3758/MC.38.7.951.



Fishbein, Bethany, Michael O. Martin, Ina V. S. Mullis, and Pierre Foy. 2018. “The TIMSS 2019 Item Equivalence Study: Examining Mode Effects for Computer-Based Assessment and Implications for Measuring Trends.” Large-Scale Assessments in Education 6 (1): 11. https://doi.org/10.1186/s40536-018-0064-z.



Frey, Andreas, Johannes Hartig, and André A. Rupp. 2009. “An NCME Instructional Module on Booklet Designs in Large-Scale Assessments of Student Achievement: Theory and Practice.” Educational Measurement: Issues and Practice 28 (3): 39–53. https://doi.org/10.1111/j.1745-3992.2009.00154.x.



Frey, Andreas, Christian Spoden, Frank Goldhammer, and S. Franziska C. Wenzel. 2018. “Response Time-Based Treatment of Omitted Responses in Computer-Based Testing.” Behaviormetrika 45 (2): 505–26. https://doi.org/10.1007/s41237-018-0073-9.



Frey, Bruce B., Vicki L. Schmitt, and Justin P. Allen. 2012. “Defining Authentic Classroom Assessment.” https://doi.org/10.7275/SXBS-0829.



Gabadinho, Alexis, Gilbert Ritschard, Nicolas S. Müller, and Matthias Studer. 2011. “Analyzing and Visualizing State Sequences in R with TraMineR.” Journal of Statistical Software 40 (4). https://doi.org/10.18637/jss.v040.i04.



Gandrud, Christopher. 2020. Reproducible Research with R and RStudio. Third edition. The R Series. Boca Raton, FL: CRC Press.



George, A. C., and A. Robitzsch. 2015. “Cognitive Diagnosis Models in R: A Didactic.” The Quantitative Methods for Psychology 11 (3): 189–205. https://doi.org/10.20982/tqmp.11.3.p189.



Gierl, Mark J., and Hollis Lai. 2013. “Instructional Topics in Educational Measurement (ITEMS) Module: Using Automated Processes to Generate Test Items.” Educational Measurement: Issues and Practice 32 (3): 36–50. https://doi.org/10.1111/emip.12018.



Gierl, Mark J., Hollis Lai, and Simon R Turner. 2012. “Using Automatic Item Generation to Create Multiple-Choice Test Items: Automatic Generation of Test Items.” Medical Education 46 (8): 757–65. https://doi.org/10.1111/j.1365-2923.2012.04289.x.



Gobert, Janice D., Michael Sao Pedro, Juelaila Raziuddin, and Ryan S. Baker. 2013. “From Log Files to Assessment Metrics: Measuring Students’ Science Inquiry Skills Using Educational Data Mining.” Journal of the Learning Sciences 22 (4): 521–63. https://doi.org/10.1080/10508406.2013.837391.



Goldhammer, Frank. 2015. “Measuring Ability, Speed, or Both? Challenges, Psychometric Solutions, and What Can Be Gained From Experimental Control.” Measurement: Interdisciplinary Research and Perspectives 13 (3-4): 133–64. https://doi.org/10.1080/15366367.2015.1100020.



Goldhammer, Frank, Caroline Hahnel, and Ulf Kroehne. 2020. “Analysing Log File Data from PIAAC.” In Large-Scale Cognitive Assessment: Analyzing PIAAC Data, edited by Debora B. Maehler and Beatrice Rammstedt. Cham: Springer.



Goldhammer, Frank, Carolin Hahnel, Ulf Kroehne, and Fabian Zehner. 2021. “From Byproduct to Design Factor: On Validating the Interpretation of Process Indicators Based on Log Data.” Large-Scale Assessments in Education 9 (1): 20. https://doi.org/10.1186/s40536-021-00113-5.



Goldhammer, Frank, and U. Kroehne. 2020. “Computerbasiertes Assessment.” In Testtheorie und Fragebogenkonstruktion, edited by Helfried Moosbrugger and Augustin Kelava, 119–41. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-61532-4_6.



Goldhammer, Frank, Thomas Martens, and Oliver Lüdtke. 2017. “Conditioning Factors of Test-Taking Engagement in PIAAC: An Exploratory IRT Modelling Approach Considering Person and Item Characteristics.” Large-Scale Assessments in Education 5 (1): 18. https://doi.org/10.1186/s40536-017-0051-9.



Goldhammer, Frank, Johannes Naumann, Annette Stelter, Krisztina Tóth, Heiko Rölke, and Eckhard Klieme. 2014. “The Time on Task Effect in Reading and Problem Solving Is Moderated by Task Difficulty and Skill: Insights from a Computer-Based Large-Scale Assessment.” Journal of Educational Psychology 106 (3): 608–26. https://doi.org/10.1037/a0034716.



Goldhammer, Frank, and Fabian Zehner. 2017. “What to Make Of and How to Interpret Process Data.” Measurement: Interdisciplinary Research and Perspectives 15 (3-4): 128–32. https://doi.org/10.1080/15366367.2017.1411651.



Gong, Tao, Yang Jiang, Luis E. Saldivia, and Christopher Agard. 2022. “Using Sankey Diagrams to Visualize Drag and Drop Action Sequences in Technology-Enhanced Items.” Behavior Research Methods 54 (1): 117–32. https://doi.org/10.3758/s13428-021-01615-4.



Gorgun, Guher, and Okan Bulut. 2021. “A Polytomous Scoring Approach to Handle Not-Reached Items in Low-Stakes Assessments.” Educational and Psychological Measurement 81 (5): 847–71. https://doi.org/10.1177/0013164421991211.



Greiff, Samuel, Christoph Niepel, Ronny Scherer, and Romain Martin. 2016. “Understanding Students’ Performance in a Computer-Based Assessment of Complex Problem Solving: An Analysis of Behavioral Data from Computer-Generated Log Files.” Computers in Human Behavior 61 (August): 36–46. https://doi.org/10.1016/j.chb.2016.02.095.



Hahnel, Carolin, Beate Eichmann, and Frank Goldhammer. 2020. “Evaluation of Online Information in University Students: Development and Scaling of the Screening Instrument EVON.” Frontiers in Psychology 11 (December): 562128. https://doi.org/10.3389/fpsyg.2020.562128.



Hahnel, Carolin, Alexander J. Jung, and Frank Goldhammer. 2023. “Theory Matters: An Example of Deriving Process Indicators From Log Data to Assess Decision-Making Processes in Web Search Tasks.” European Journal of Psychological Assessment 39 (4): 271–79. https://doi.org/10.1027/1015-5759/a000776.



Hahnel, Carolin, Ulf Kroehne, Frank Goldhammer, Cornelia Schoor, Nina Mahlow, and Cordula Artelt. 2019. “Validating Process Variables of Sourcing in an Assessment of Multiple Document Comprehension.” British Journal of Educational Psychology, April, bjep.12278. https://doi.org/10.1111/bjep.12278.



Hahnel, Carolin, Dara Ramalingam, Ulf Kroehne, and Frank Goldhammer. 2022. “Patterns of Reading Behaviour in Digital Hypertext Environments.” Journal of Computer Assisted Learning, July, jcal.12709. https://doi.org/10.1111/jcal.12709.



Haigh, Matt. 2010. “Why Use Computer-Based Assessment in Education? A Literature Review,” no. 10: 8.



Hao, Jiangang, Zhan Shu, and Alina von Davier. 2015. “Analyzing Process Data from Game/Scenario-Based Tasks: An Edit Distance Approach.” JEDM-Journal of Educational Data Mining 7 (1): 33–50.



Harsch, Claudia, and Johannes Hartig. 2016. “Comparing C-tests and Yes/No Vocabulary Size Tests as Predictors of Receptive Language Skills.” Language Testing 33 (4): 555–75. https://doi.org/10.1177/0265532215594642.



Haverkamp, Ymkje E, Ivar Bråten, Natalia Latini, and Ladislao Salmerón. 2022. “Is It the Size, the Movement, or Both? Investigating Effects of Screen Size and Text Movement on Processing, Understanding, and Motivation When Students Read Informational Text,” 20.



Hethey, Jonathan M. 2013. GitLab Repository Management: Delve into Managing Your Projects with GitLab, While Tailoring It to Fit Your Environment. Community Experience Distilled. Birmingham: Packt Publ.



Hetter, Rebecca D., and J. Bradford Sympson. 1997. “Item Exposure Control in CAT-ASVAB.” In Computerized Adaptive Testing: From Inquiry to Operation., edited by William A. Sands, Brian K. Waters, and James R. McBride, 141–44. Washington: American Psychological Association. https://doi.org/10.1037/10244-014.



Heyne, Nora, Cordula Artelt, Timo Gnambs, Karin Gehrer, and Cornelia Schoor. 2020. “Instructed Highlighting of Text Passages Indicator of Reading or Strategic Performance?” Lingua 236 (March): 102803. https://doi.org/10.1016/j.lingua.2020.102803.



Hornke, Lutz F. 2005. “Response Time in Computer-Aided Testing: A ‘Verbal Memory’ Test for Routes and Maps,” 14.



Ihme, Jan Marten, Martin Senkbeil, Frank Goldhammer, and Julia Gerick. 2017. “Assessment of Computer and Information Literacy in ICILS 2013: Do Different Item Types Measure the Same Construct?” European Educational Research Journal 16 (6): 716–32. https://doi.org/10.1177/1474904117696095.



International Test Commission and Association of Test Publishers. 2022. Guidelines for Technology-Based Assessment.



Jaeger, Judith. 2018. “Digit Symbol Substitution Test: The Case for Sensitivity Over Specificity in Neuropsychological Testing.” Journal of Clinical Psychopharmacology 38 (5): 513–19. https://doi.org/10.1097/JCP.0000000000000941.



Jiang, Yang, Tao Gong, Luis E. Saldivia, Gabrielle Cayton-Hodges, and Christopher Agard. 2021. “Using Process Data to Understand Problem-Solving Strategies and Processes for Drag-and-Drop Items in a Large-Scale Mathematics Assessment.” Large-Scale Assessments in Education 9 (1): 2. https://doi.org/10.1186/s40536-021-00095-4.



Jiao, Hong, Dandan Liao, and Peida Zhan. 2019. “Utilizing Process Data for Cognitive Diagnosis.” In Handbook of Diagnostic Classification Models, edited by Matthias von Davier and Young-Sun Lee, 421–36. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-05584-4_20.



Jung, Stefanie, Juergen Heller, Korbinian Moeller, and Elise Klein. 2019. “Mode Effect: An Issue of Perspective? Writing Mode Differences in a Spelling Assessment in German Children with and Without Developmental Dyslexia,” 38.



Jurecka, Astrid. 2008. “Introduction to the Computer-Based Assessment of Competencies.” Assessment of Competencies in Educational Contexts, 193–214.



Kirsch, Irwin, and Mary Louise Lennon. 2017. “PIAAC: A New Design for a New Era.” Large-Scale Assessments in Education 5 (1): 11. https://doi.org/10.1186/s40536-017-0046-6.



Koehler, C., S. Pohl, and C. H. Carstensen. 2014. “Taking the Missing Propensity Into Account When Estimating Competence Scores: Evaluation of Item Response Theory Models for Nonignorable Omissions.” Educational and Psychological Measurement, December. https://doi.org/10.1177/0013164414561785.



Kreuter, Frauke, ed. 2013. Improving Surveys with Paradata: Analytic Uses of Process Information. Wiley Series in Survey Methodology. Hoboken, New Jersey: Wiley & Sons.



Kroehne, Ulf. In Preperation. “Standardization of Log Data from Computer-Based Assessments.”



Kroehne, Ulf, Sarah Buerger, Carolin Hahnel, and Frank Goldhammer. 2019. “Construct Equivalence of PISA Reading Comprehension Measured With Paper-Based and Computer-Based Assessments.” Educational Measurement: Issues and Practice, July, emip.12280. https://doi.org/10.1111/emip.12280.



Kroehne, Ulf, Tobias Deribo, and Frank Goldhammer. 2020. “Rapid Guessing Rates Across Administration Mode and Test Setting.” Psychological Test and Assessment Modeling 62 (2): 147–77.



Kroehne, Ulf, Timo Gnambs, and Frank Goldhammer. 2019. “Disentangling Setting and Mode Effects for Online Competence Assessment.” In Education as a Lifelong Process, 171–93. Edition ZfE. Wiesbaden: Springer VS. https://doi.org/10.1007/978-3-658-23162-0_10.



Kroehne, Ulf, and Frank Goldhammer. in Press. “Tools for Analyzing Log-File Data.” In.



———. 2018. “How to Conceptualize, Represent, and Analyze Log Data from Technology-Based Assessments? A Generic Framework and an Application to Questionnaire Items.” Behaviormetrika. https://doi.org/10.1007/s41237-018-0063-y.



Kroehne, Ulf, Frank Goldhammer, and Ivailo Partchev. 2014. “Constrained Multidimensional Adaptive Testing Without Intermixing Items from Different Dimensions.” Psychological Test and Assessment Modeling 56 (4): 348.



Kroehne, Ulf, Carolin Hahnel, and Frank Goldhammer. 2019. “Invariance of the Response Processes Between Gender and Modes in an Assessment of Reading.” Frontiers in Applied Mathematics and Statistics 5: 2. https://doi.org/10.3389/fams.2019.00002.



Kroehne, Ulf, and Thomas Martens. 2011. “Computer-Based Competence Tests in the National Educational Panel Study: The Challenge of Mode Effects.” Zeitschrift Für Erziehungswissenschaft 14 (S2): 169–86. https://doi.org/10.1007/s11618-011-0185-4.



Kyllonen, Patrick, and Jiyun Zu. 2016. “Use of Response Time for Measuring Cognitive Ability.” Journal of Intelligence 4 (4): 14. https://doi.org/10.3390/jintelligence4040014.



Lahza, Hatim, Tammy G. Smith, and Hassan Khosravi. 2022. “Beyond Item Analysis: Connecting Student Behaviour and Performance Using e-Assessment Logs.” British Journal of Educational Technology, October, bjet.13270. https://doi.org/10.1111/bjet.13270.



Lane, Suzanne, Mark R. Raymond, and Thomas M. Haladyna, eds. 2015. Handbook of Test Development. Second edition. New York: Routledge.



Lesyuk, Andriy. 2013. Mastering Redmine. Birmingham, UK: Packt Publishing.



Linden, Wim J., and Qi Diao. 2011. “Automated Test-Form Generation.” Journal of Educational Measurement 48 (2): 206–22.



Lu, Jing, Chun Wang, Jiwei Zhang, and Jian Tao. 2019. “A Mixture Model for Responses and Response Times with a Higher-Order Ability Structure to Detect Rapid Guessing Behaviour.” British Journal of Mathematical and Statistical Psychology, August, bmsp.12175. https://doi.org/10.1111/bmsp.12175.



Magis, David, and Juan Ramon Barrada. 2017. “Computerized Adaptive Testing with R : Recent Updates of the Package catR.” Journal of Statistical Software 76 (Code Snippet 1). https://doi.org/10.18637/jss.v076.c01.



Magis, David, and Gilles Raîche. 2012. “Random Generation of Response Patterns Under Computerized Adaptive Testing with the R Package catR.” Journal of Statistical Software 48 (8): 1–31. https://doi.org/10.18637/jss.v048.i08.



Mason, Mike. 2006. Pragmatic Version Control Using Subversion. 2nd ed. Pragmatic Starter Kit, v. 1. Raleigh, N.C: Pragmatic Bookshelf.



Mayerl, Jochen. 2013. “Response Latency Measurement in Surveys. Detecting Strong Attitudes and Response Effects.” Survey Methods: Insights from the Field (SMIF).



Mills, Craig N., ed. 2002. Computer-Based Testing: Building the Foundation for Future Assessments. Mahwah, N.J: L. Erlbaum Associates.



Naglieri, Jack A, Fritz Drasgow, Mark Schmit, Len Handler, Aurelio Prifitera, Amy Margolis, and Roberto Velasquez. 2004. “Psychological Testing on the Internet: New Problems, Old Issues.” American Psychologist 59 (3): 150.



Naumann, Johannes. 2015. “A Model of Online Reading Engagement: Linking Engagement, Navigation, and Performance in Digital Reading.” Computers in Human Behavior 53 (December): 263–77. https://doi.org/10.1016/j.chb.2015.06.051.



Naumann, Johannes, and Frank Goldhammer. 2017. “Time-on-Task Effects in Digital Reading Are Non-Linear and Moderated by Persons’ Skills and Tasks’ Demands.” Learning and Individual Differences 53: 1–16.



Naumann, Johannes, and Christine Sälzer. 2017. “Digital Reading Proficiency in German 15-Year Olds: Evidence from PISA 2012.” Zeitschrift Für Erziehungswissenschaft 20 (4): 585–603. https://doi.org/10.1007/s11618-017-0758-y.



Neubert, Jonas C., André Kretzschmar, Sascha Wüstenberg, and Samuel Greiff. 2015. “Extending the Assessment of Complex Problem Solving to Finite State Automata: Embracing Heterogeneity.” European Journal of Psychological Assessment 31 (3): 181–94. https://doi.org/10.1027/1015-5759/a000224.



OECD. 2013. The Survey of Adult Skills: Reader’s Companion. OECD. https://doi.org/10.1787/9789264204027-en.



———. 2019. Beyond Proficiency: Using Log Files to Understand Respondent Behaviour in the Survey of Adult Skills. OECD Skills Studies. OECD. https://doi.org/10.1787/0b1414ed-en.



Parshall, Cynthia G., ed. 2002. Practical Considerations in Computer-Based Testing. New York: Springer.



Partchev, Ivailo. 2004. “A Visual Guide to Item Response Theory.” Retrieved November 9: 2004.



Pavic, Aleksandar. 2016. Redmine Cookbook: Over 80 Hands-on Recipes to Improve Your Skills in Project Management, Team Management, Process Improvement, and Redmine Administration.



Persic-Beck, Lothar, Frank Goldhammer, and Ulf Kroehne. 2022. “Disengaged Response Behavior When the Response Button Is Blocked: Evaluation of a Micro-Intervention.” Frontiers in Psychology 13 (November): 954532. https://doi.org/10.3389/fpsyg.2022.954532.



Phillips, Addison, and Mark Davis. 2009. “Tags for Identifying Languages.”



Pohl, Steffi. 2013. “Longitudinal Multistage Testing.” Journal of Educational Measurement 50 (4): 447–68.



“Question and Test Interoperability (QTI): Implementation Guide.” 2022. http://www.imsglobal.org/question/qtiv2p2/imsqti_v2p2_impl.html.



Reips, Ulf-Dietrich. 2010. “Design and Formatting in Internet-based Research.” In Advanced Methods for Conducting Online Behavioral Research, edited by S. Gosling and J. Johnson, 29–43. Washington, DC: American Psychological Association.



Reis Costa, Denise, Maria Bolsinova, Jesper Tijmstra, and Björn Andersson. 2021. “Improving the Precision of Ability Estimates Using Time-On-Task Variables: Insights From the PISA 2012 Computer-Based Assessment of Mathematics.” Frontiers in Psychology 12 (March): 579128. https://doi.org/10.3389/fpsyg.2021.579128.



Reis Costa, Denise, and Waldir Leoncio. 2019. LOGAN: Log File Analysis in International Large-Scale Assessments. Manual.



Rios, Joseph A. 2022. “Assessing the Accuracy of Parameter Estimates in the Presence of Rapid Guessing Misclassifications.” Educational and Psychological Measurement 82 (1): 122–50. https://doi.org/10.1177/00131644211003640.



Rios, Joseph A., Hongwen Guo, Liyang Mao, and Ou Lydia Liu. 2017. “Evaluating the Impact of Careless Responding on Aggregated-Scores: To Filter Unmotivated Examinees or Not?” International Journal of Testing 17 (1): 74–104. https://doi.org/10.1080/15305058.2016.1231193.



Rios, Joseph A., and James Soland. 2021. “Parameter Estimation Accuracy of the Effort-Moderated Item Response Theory Model Under Multiple Assumption Violations.” Educational and Psychological Measurement 81 (3): 569–94. https://doi.org/10.1177/0013164420949896.



———. 2022. “An Investigation of Item, Examinee, and Country Correlates of Rapid Guessing in PISA.” International Journal of Testing, February, 1–31. https://doi.org/10.1080/15305058.2022.2036161.



Robitzsch, Alexander, Thomas Kiefer, and Margaret Wu. 2022. TAM: Test Analysis Modules. Manual.



Robitzsch, Alexander, and Oliver Lüdtke. 2022. “Some Thoughts on Analytical Choices in the Scaling Model for Test Scores in International Large-Scale Assessment Studies.” Measurement Instruments for the Social Sciences 4 (1): 9. https://doi.org/10.1186/s42409-022-00039-w.



Robitzsch, A., O. Lüdtke, F. Goldhammer, Ulf Kroehne, and O. Köller. 2020. “Reanalysis of the German PISA Data: A Comparison of Different Approaches for Trend Estimation with a Particular Emphasis on Mode Effects.” Frontiers in Psychology 11 (884). https://doi.org/http://dx.doi.org/10.3389/fpsyg.2020.00884.



Rölke, Heiko. 2012. “The ItemBuilder: A Graphical Authoring System for Complex Item Development.” In World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education, 2012:344–53.



Rose, Norman, Matthias von Davier, and Benjamin Nagengast. 2017. “Modeling Omitted and Not-Reached Items in IRT Models.” Psychometrika 82 (3): 795–819. https://doi.org/10.1007/s11336-016-9544-7.



Sahin, Füsun, and Kimberly F. Colvin. 2020. “Enhancing Response Time Thresholds with Response Behaviors for Detecting Disengaged Examinees.” Large-Scale Assessments in Education 8 (1): 5. https://doi.org/10.1186/s40536-020-00082-1.



Scalise, Kathleen, and Diane D. Allen. 2015. “Use of Open-Source Software for Adaptive Measurement: Concerto as an R-based Computer Adaptive Development and Delivery Platform.” British Journal of Mathematical and Statistical Psychology 68 (3): 478–96. https://doi.org/10.1111/bmsp.12057.



Scalise, Kathleen, and Bernard Gifford. 2006. “Computer-Based Assessment in E-learning: A Framework for Constructing" Intermediate Constraint" Questions and Tasks for Technology Platforms.” The Journal of Technology, Learning and Assessment 4 (6).



Schmiedek, Florian, Ulf Kroehne, Frank Goldhammer, John J. Prindle, Ulman Lindenberger, Johanna Klinger-König, Hans J. Grabe, et al. 2022. “General Cognitive Ability Assessment in the German National Cohort (NAKO) The Block-Adaptive Number Series Task.” The World Journal of Biological Psychiatry, February, 1–12. https://doi.org/10.1080/15622975.2021.2011407.



Schnipke, Deborah L., and David J. Scrams. 1997. “Modeling Item Response Times With a Two-State Mixture Model: A New Method of Measuring Speededness.” Journal of Educational Measurement 34 (3): 213–32.



Schnitzler, Maya, R. Baumann, Barkow, I., and Heiko Rölke. 2013. “Chapter 5: Development of the Cognitive Items.” In.



Shin, Hyo Jeong, Paul A. Jewsbury, and Peter W. van Rijn. 2022. “Generating Group-Level Scores Under Response Accuracy-Time Conditional Dependence.” Large-Scale Assessments in Education 10 (1): 4. https://doi.org/10.1186/s40536-022-00122-y.



Shute, Valerie J. 2008. “Focus on Formative Feedback.” Review of Educational Research 78 (1): 153–89. https://doi.org/10.3102/0034654307313795.



Shute, Valerie J., Lubin Wang, Samuel Greiff, Weinan Zhao, and Gregory Moore. 2016. “Measuring Problem Solving Skills via Stealth Assessment in an Engaging Video Game.” Computers in Human Behavior 63 (October): 106–17. https://doi.org/10.1016/j.chb.2016.05.047.



Sideridis, Georgios, and Maisa Alahmadi. 2022. “Estimation of Person Ability Under Rapid and Effortful Responding.” Journal of Intelligence 10 (3): 67. https://doi.org/10.3390/jintelligence10030067.



Sireci, Stephen G, and April L Zenisky. 2015. “Innovative Item Formats in Computer-Based Testing: In Pursuit of Improved Construct Representation.” In Handbook of Test Development, 313–34. Routledge.



Slepkov, Aaron D., and Alan T. K. Godfrey. 2019. “Partial Credit in Answer-Until-Correct Multiple-Choice Tests Deployed in a Classroom Setting.” Applied Measurement in Education 32 (2): 138–50. https://doi.org/10.1080/08957347.2019.1577249.



Soland, James, Megan Kuhfeld, and Joseph Rios. 2021. “Comparing Different Response Time Threshold Setting Methods to Detect Low Effort on a Large-Scale Assessment.” Large-Scale Assessments in Education 9 (1): 8. https://doi.org/10.1186/s40536-021-00100-w.



Stemmann, Jennifer. 2016. “Technische Problemlösekompetenz Im Alltag - Theoretische Entwicklung Und Empirische Prüfung Des Kompetenzkonstruktes Problemlösen Im Umgang Mit Technischen Geräten.” PhD thesis.



Stodden, Victoria, Friedrich Leisch, and Roger D. Peng, eds. 2014. Implementing Reproducible Research. The R Series. Boca Raton: CRC Press, Taylor & Francis Group.



Striewe, Michael, and Matthias Kramer. 2018. “Empirische Untersuchungen von Lückentext-Items Zur Beherrschung Der Syntax Einer Programmiersprache.” Commentarii Informaticae Didacticae, no. 12: 101–15.



Tang, Xueying, Susu Zhang, Zhi Wang, Jingchen Liu, and Zhiliang Ying. 2021. “ProcData: An R Package for Process Data Analysis.” Psychometrika 86 (4): 1058–83. https://doi.org/10.1007/s11336-021-09798-7.



Tomasik, Martin J., Stéphanie Berger, and Urs Moser. 2018. “On the Development of a Computer-Based Tool for Formative Student Assessment: Epistemological, Methodological, and Practical Issues.” Frontiers in Psychology 9 (November): 2245. https://doi.org/10.3389/fpsyg.2018.02245.



Toplak, Maggie E., Richard F. West, and Keith E. Stanovich. 2014. “Assessing Miserly Information Processing: An Expansion of the Cognitive Reflection Test.” Thinking & Reasoning 20 (2): 147–68. https://doi.org/10.1080/13546783.2013.844729.



Tóth, Krisztina, Heiko Rölke, Samuel Greiff, and Sascha Wüstenberg. 2014. “Discovering Students’ Complex Problem Solving Strategies in Educational Assessment.” In Proceedings of the 7th International Conference on Educational Data Mining.(pp. 225-228). International Educational Data Mining Society.



Tsitoara, Mariot. 2020. Beginning Git and GitHub: A Comprehensive Guide to Version Control, Project Management, and Teamwork for the New Developer. Berkeley, CA: Apress. https://doi.org/10.1007/978-1-4842-5313-7.



Ulitzsch, Esther, Qiwei He, and Steffi Pohl. 2022. “Using Sequence Mining Techniques for Understanding Incorrect Behavioral Patterns on Interactive Tasks.” Journal of Educational and Behavioral Statistics 47 (1): 3–35. https://doi.org/10.3102/10769986211010467.



Ulitzsch, Esther, Christiane Penk, Matthias von Davier, and Steffi Pohl. 2021. “Model Meets Reality: Validating a New Behavioral Measure for Test-Taking Effort.” Educational Assessment 26 (2): 104–24. https://doi.org/10.1080/10627197.2020.1858786.



Ulitzsch, Esther, Steffi Pohl, Lale Khorramdel, Ulf Kroehne, and Matthias von Davier. 2021. “A Response-Time-Based Latent Response Mixture Model for Identifying and Modeling Careless and Insufficient Effort Responding in Survey Data.” Psychometrika, December. https://doi.org/10.1007/s11336-021-09817-7.



Ulitzsch, Esther, Matthias von Davier, and Steffi Pohl. 2020. “A Multiprocess Item Response Model for Not-Reached Items Due to Time Limits and Quitting.” Educational and Psychological Measurement 80 (3): 522–47. https://doi.org/10.1177/0013164419878241.



van der Kleij, Fabienne M., Theo J. H. M. Eggen, Caroline F. Timmers, and Bernard P. Veldkamp. 2012. “Effects of Feedback in a Computer-Based Assessment for Learning.” Computers & Education 58 (1): 263–72. https://doi.org/10.1016/j.compedu.2011.07.020.



van der Linden, Wim J. 2007. “A Hierarchical Framework for Modeling Speed and Accuracy on Test Items.” Psychometrika 72 (3): 287–308. https://doi.org/10.1007/s11336-006-1478-z.



van der Linden, Wim J., and Cees A. W. Glas. 2000. Computerized Adaptive Testing: Theory and Practice. Springer.



van der Linden, Wim J., R. H. Klein Entink, and J.-P. Fox. 2010. “IRT Parameter Estimation With Response Times as Collateral Information.” Applied Psychological Measurement 34 (5): 327–47. https://doi.org/10.1177/0146621609349800.



van der Linen, Wim J. 2006. “Model-Based Innovations in Computer-Based Testing.” In Computer-Based Testing and the Internet: Issues and Advances., edited by Dave Bartram and Ronald K. Hambleton, 39–58. Chichester: Wiley.



Veldkamp, Bernard P., and Cor Sluijter, eds. 2019. Theoretical and Practical Advances in Computer-based Educational Measurement. Methodology of Educational Measurement and Assessment. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-18480-3.



von Davier, Matthias. 2018. “Automated Item Generation with Recurrent Neural Networks.” Psychometrika 83 (4): 847–57. https://doi.org/10.1007/s11336-018-9608-y.



Weiss, D. J. 1982. “Improving Measurement Quality and Efficiency with Adaptive Testing.” Applied Psychological Measurement 6 (4): 473–92. https://doi.org/10.1177/014662168200600408.



Wiliam, Dylan. 2011. “What Is Assessment for Learning?” Studies in Educational Evaluation 37 (1): 3–14. https://doi.org/10.1016/j.stueduc.2011.03.001.



Williamson, David M, Mislevy, and Isaac I Bejar. 2006. Automated Scoring of Complex Tasks in Computer-Based Testing. Mahwah, N.J.: Lawrence Erlbaum Associates.



Wise, Steven L. 2017. “Rapid-Guessing Behavior: Its Identification, Interpretation, and Implications.” Educational Measurement: Issues and Practice 36 (4): 52–61. https://doi.org/10.1111/emip.12165.



———. 2019. “An Information-Based Approach to Identifying Rapid-Guessing Thresholds.” Applied Measurement in Education 32 (4): 325–36. https://doi.org/10.1080/08957347.2019.1660350.



Wise, Steven L., and Christine E. DeMars. 2006. “An Application of Item Response Time: The Effort-Moderated IRT Model.” Journal of Educational Measurement 43 (1): 19–38.



Wise, Steven L., Megan R. Kuhfeld, and James Soland. 2019. “The Effects of Effort Monitoring With Proctor Notification on Test-Taking Engagement, Test Performance, and Validity.” Applied Measurement in Education 32 (2): 183–92. https://doi.org/10.1080/08957347.2019.1577248.



Wools, Saskia, Mark Molenaar, and Dorien Hopster-den Otter. 2019. “The Validity of Technology Enhanced Assessments and Opportunities.” In Theoretical and Practical Advances in Computer-based Educational Measurement, edited by Bernard P. Veldkamp and Cor Sluijter, 3–19. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-18480-3_1.



Xie, Yihui. 2015. Dynamic Documents with R and Knitr. Second edition. Boca Raton: CRC Press/Taylor & Francis.



Yan, Duanli, André A. Rupp, and Peter W. Foltz, eds. 2020. Handbook of Automated Scoring; Theory into Practice. CRC Press/Taylor & Francis Group.



Yousfi, Safir, and Hendryk F. Böhme. 2012. “Principles and Procedures of Considering Item Sequence Effects in the Development of Calibrated Item Pools: Conceptual Analysis and Empirical Illustration.” Psychol. Test Assess. Model 54: 366–96.



Zehner, Fabian, Frank Goldhammer, Emily Lubaway, and Christine Sälzer. 2018. “Unattended Consequences: How Text Responses Alter Alongside PISA’s Mode Change from 2012 to 2015.” Education Inquiry, October, 1–22. https://doi.org/10.1080/20004508.2018.1518080.



Zehner, Fabian, Christine Sälzer, and Frank Goldhammer. 2016. “Automatic Coding of Short Text Responses via Clustering in Educational Assessment.” Educational and Psychological Measurement 76 (2): 280–303. https://doi.org/10.1177/0013164415590022.



Zheng, Y., and H.-H. Chang. 2015. “On-the-Fly Assembled Multistage Adaptive Testing.” Applied Psychological Measurement 39 (2): 104–18. https://doi.org/10.1177/0146621614544519.



Zumbo, Bruno D., and Anita M. Hubley, eds. 2017. Understanding and Investigating Response Processes in Validation Research. Vol. 69. Social Indicators Research Series. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-56129-5.






EPUB/media/file412.png
Page: X1 (X-page) Page: Page1 ® Start ->

v @ Running
Change to "X2" and "Page2"
v &Y

® XStart
@ ST X1 -> X1
@ ST X2 -> X2
v & Regular
@® RegularStart
@ ST_Page1 -> Pagel

File: ChangeXPage
AndPageExample.zip @ ST_Page?2 -> Page2





EPUB/media/file129.png
Hands-on: Create an Instruction Page -- Start

Create an Instruction Page ’

® 6 Steps to create an Instruction Page in
CBA Item Builder

ldea
® Read the instruction on screen
® Try to implement the steps
® \Watch the video if necessary

This hands-on will take 10 minutes.

https://unsplash.com/photos/uvvvKneSp_U?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink

FullScreen Let's Start






EPUB/media/file501.png





EPUB/media/file315.png
Web Browser
Web Child 1

Web Child 2

Web Child 3






EPUB/media/file78.png





EPUB/media/file137.png





EPUB/media/file307.png
~ Component Interaction
Attached Scale
Command
Increment
Raised Alternate Event
Raised Event

~ Display
Border Color
Border Width
Cursor
Is Transparent
Selected Background Color
Use Default Link Color

Visited Reference Color

~ Display Images

TRIGGER FULLSCREEN
CANCEL_FULLSCREEN
|CLOSE_AND_NEXT_TASK

Activated Image






EPUB/media/file331.png
Dialog Properties

Modal Closable
true false

false Closable Dialog Non-Closable Dialog
true Closable Modal Dialog Non-Closable Modal Dialog

Example Content: [J Checkbox O yes O no

File: SimpleDialogExample.zip





EPUB/media/file226.png
Highlighting Example
Text Highlighting (from PIAAC)

Look at the list of preschool rules. Highlight information in the list to answer the
question below.

What is the latest time that the children should arrive at
preschool?

Preschool Rules

Welcome to our Preschool! We are looking forward to a great year of fun,
learning and getting to know each other. Please take a moment to review our
preschool rules.

Please have your child here by 9:00 am.

Bring a small blanket or pillow and/or a small soft toy for naptime.

Dress your child comfortably and bring a change of clothing.

Please no jewelry or candy. If your child has a birthday please talk to your

child’s teacher about a special snack for the children.

Please bring your child fully dressed, no pajamas.

¢ Please sign in with your full signature. This is a licensing regulation. Thank
you.

¢ Breakfast will be served until 7:30 am.

¢ Medications have to be in original, labeled containers and must be signed

into the medication sheet located in each classroom. I_

¢ |If you have any questions, please talk to your classroom teacher or to Ms. Green
Marlene or Ms. Tree.
Red

File: HighlightingExample.zip





EPUB/media/file242.png
[ selectable





EPUB/media/file404.png
ElapsedTime()-Operator Example

Start ’ ’ Elapsed time between start and stop: 0 sec.

File: ElapsedTimeOperatorExample.zip





EPUB/media/file218.png





EPUB/media/file153.png
& CBA Item Builder

& Auto Loyout Panel Properties o
File Edt Diogrom Broject Templates Utiities Help
O0EEEM0 @RMIzEe Auto Layout Table Settings
[ 4x: | Specifythe rows, columns and celsof the layout of the panel space.
Segoe Ul S VB rlAvec g -] B
@ “pagel.chaml_diagram 33 | Rows  Columns Cells
I R R R T
= z Peckvalues o clicked cell:
Combine| | Dissolve | Clear Selection
Horizontal Alignment: | -
- 1x1] [1x1
Vertcal Alignment: |-
5 1x3| [1x1] [1x1
ol i Directedit for asingle selected cell:
Horizontal Alignment; [STRETCH
Vertcal Algnment. | STRETCH
¢ Sting vl for muiple el
Horizontal Alignment, [STRETCH v
Vertical Alignment: | STRETCH.
g Curently selected: |-
: Set for Selected Cells
8
< oK Cancel






EPUB/media/file161.png
@) page.coam_diagram £3
Example for Using PageAreas

Sagetien “areat” showing Sageties “areal” showing
e page p_areaZ"

[ Show Propertes View
Properties






EPUB/media/file250.png
Table Examples

Type: Standard

. - Example 1

Example 2

Each cell in the table ... J...is a Rich Text. Example 3
Field

Type: Spreadsheet

Example 5
Example 6

File: TableExamples.zip





EPUB/media/file71.png





EPUB/media/file211.png
Text Field Options Example

SimpleTextField

Plain text with
identical formatting

If the content
requires more
space than
provided (as it is
the case in this
example)_vertical

v

HTMLTextField

Content that can be
formatted by characther,

e.g. LARGE text is
supporting ¢, and super
script, bold, underline
and Jtalic and justified
text.

1. Even Lists and

® Bullet points are

supported.

File: TextFieldOptionsExample.zip

(Rich) TextField

# The most options for formatting text,
icluding line spacing, embedded
Images and the possibility to allow text
highlighting are possible using
components of type TextField

(previously labeld as RichTextField).





EPUB/media/file475.png
Calculator Example

Show Calculator as Dialog

Show Calculator as Modal Dialog

Simple Calculator

D Show Thousand Separator

D Comma (German) or Dot (English)

File: CalculatorExample.zip

8 9 C | AC
5 6 X /
2 3 ¥ =
PI |






EPUB/media/file378.png
File >

Edit >
% Delete from Diagram
% Delete from Model

B select >
Arrange Al
Fiters >
Link mage

[ Show Propertes View

Properties






EPUB/media/file114.png





EPUB/media/file556.png





EPUB/media/file451.png
Examples for Input Validation Events

SingleLinelnputField

[0-91*

InputField

[0-91*

Not focused: Click into one of the two white text fields and enter a number.

File: InputValidationEventExample.zip





EPUB/media/file55.png
G: Example Block for a Multi-Stage Test using Raw Scores

Prologue

Main

BLOCK

TASK(S), e.g., ltems

Set Variable [ VStagelTaskList

TASK(S), e.g., ltems

Set Variable | VStage1ResultList

=M Show Items from List

Set Variable

VStagelScore =

0 Can Navigate Back

For Each Value in

VStagelResultsList

If Task

Score

= (1

Value

Set Variable

VStagelScore|=

VStagelScore| +|1

If VStagelScore >= 6

Stage “S2-A”

Else

Stage “S2-B”

DI Td[o)s Bl Stage “S2-A”

TASK(S), e.g., ltems
TASK(S), e.g., ltems

VStagelTaskList

DI Td[e)sHl Stage “S2-B”

TASK(S), e.g., ltems
TASK(S), e.g., ltems

J






EPUB/media/file145.png





EPUB/media/file86.png
[ *Properties 52
& SimpleTextField

coe | Fontsand Main Colors

<

>
N
-
b

H ] IS

o






EPUB/media/file420.png
ExternalPageFrame API lllustration

Trace Log-Event

Set "V_Outputinteger
Set "V_OutputString
Set "V_OutputNumber®
Set "V_OutputBoolean®

V_Outputinteger =0
V_OutputNumber =7.11

Get "V_Outputinteger’
Get "V_OutputString
Get "V_OutputNumber®
Get "V_OutputBoolean®

Trigger FSM-Event

File: ExternalPageFrameAPIllllustration.zip

This ExternalPageFrame contains a button that is linked to a JavaScript
function. The function sends a JavaScript-Injected log event. Set the focus
to the item by clicking in the upper-right corner and press Strg/Ctrl+Y to
see the log message in the Trace Debug Window.

This ExternalPageFrame contains buttons that trigger JavaScript functions
to generate random values for the different variables and to transmit the
values of the variables to the Finite-State Machine layer. The value of the
variables is then shown using VariableValueDisplays. The value of the
FSM variables can also be checked using the State Machine Debug
Viewer.

V_OutputString =asdf234c34

V_OutputBoolean =true

This ExternalPageFrame contains buttons that trigger JavaScript functions
to request the values for the different variables from the Finite-State
Machine. After asking for the values, the transmission is performed
asynchronously using post messages. The retrieved values are shown
with a simple JavaScript alert.

This ExternalPageFrame contains a button that triggers a JavaScript
function to trigger a Finite-State Machine event. The event is used in the
Finite-State Machine to open a dialog.





EPUB/media/file176.png
(& Project View| [ Component Edt

Layout Preview
Add new page
Preview project

N @0

Rename project

Browse Task and Item Score

Browse value maps
Edit State Machine.
Browse variables

Can)






EPUB/media/file323.png
5 Add Note
File >

Eait >
X Delete from Diagram
X Delete from Model

Format >

3 Show Properties View
Properties






EPUB/media/file459.png
& Project Settings o
Project Settings
Plesse edit the global project settings.
(To make an icon available here you have to include it into your project via the Resource Browser first)
Project Settings Translations Icons S5 Styles Meta-Data
Add key
Title Creator
B % | B %
Subject Description
B % B %
Publisher Contributor
B % B %
Date Type
B % B %
Format Identifier
B % B %
Source Language
B % B %
Relation Coverage
B % B %
Rights.
B %
oK Cancel






EPUB/media/file184.png





EPUB/media/file192.png





EPUB/media/file346.png
& Attach ScaleValuelnput

Attach ScaleValuelnput
Please specify the ScaleValuelnput attached to the button.






EPUB/media/file532.png





EPUB/media/file257.png
|=|ImageMap





EPUB/media/file427.png
& CBA ftem Builder - ScoringlntroductionExample - C:work\github\CBAltemBuilder8ook\ib\d_09\items\Scoringlntroduct.,  — O X
File Edit Project Templotes Utilties Help
[0 eE N0 @Sk IZEe

(4 Tosks x | =8

m

8 Use first actve ht per class (sppliesto all tasks). () Use frs active miss per class (applies to al tasks).

New Delete Open || AddHt | AddMiss | EdtClames  Predew | Lyow | 4 &
Name Mintits StartPage Start X-Page Scoring  Scored Task
Taskol 1 O page

Hits.

Misses






EPUB/media/file169.png





EPUB/media/file122.png
Hands-on: Create Text-Entry Iltem -- Start

Create Text-Entry Item w _

® 10 Steps to create a Text-Entry Item in
CBA Item Builder
® Scoring will also be included

ldea
® Read the instruction on screen
® Try to implement the steps
® \Watch the video if necessary

This hands-on will take 20 minutes.

https://unsplash.com/photos/uvvvKneSp_U?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink

FullScreen Let's Start






EPUB/media/file355.png
Each grid is made up of 100 small squares that are all the same size.
What part of each grid is shaded?

Drag a decimal into each box to show your answer.

Released drag-and-drop item administered to fourth-grade
students (G4 item) in the 2017 NAEP mathematics assessment. Next \

Jiang, Y., Gong, T., Saldivia, L. E., Cayton-Hodges, G., & Agard, C. (2021). Using process data to understand problem-solving strategies and processes for
drag-and-drop items in a large-scale mathematics assessment. Large-Scale Assessments in Education, 9(1), 2. https://doi.org/10.1186/s40536-021-00095-4





EPUB/media/file338.png
& Condition - <test> 32
o |

= matches ~

F=not
= panel_distance_range

2 panel_position range

= partial

“2raised_all_events
2raised_all_events in_state:
result text

“2variable in
“2visited_allstates
2visited_all_values_of variable





EPUB/media/file297.png
[putton A& [ utona
a——— (@) Add Note

Button8

File

Edit
Delete from Diagram

% Delete from Model

Format

Set Selected Background Color
Set Command

Edit Text

LinkImage

Link Page

Link Deselect Event

Link Select Event

Attach ScaleValuelnput

[ Show Propertes View

Properties





EPUB/media/file483.png
Speech Recognition using window. SpeechRec

ognition (Chrome)/

window.webkitSpeechRecognition (Safari) in an |

ExternalPageFrame

Press the button "Start Recognition (Language
browser acccess to your computers microphon

‘ Start Recognition (Language = GEMAN) ’

=German)" and give he
e.

File: ExternalPageFrameLimitedBrowserSupportExample.zip





EPUB/media/file436.png
Matches-Operator for Text Scoring Example

This example illustrates the scoring of text responses
using the matches () -operator, which can use regular
expressions.

The userDefinedld of the SingleLinelnputField is "TextID".

Hit Definitions (Ordered):

ExactMatchHALLO: matches (TextID, "HALLO")

MatchUmlaut: matches (TextID,"&a|A[6|0|1|T")

EmptyString: matches (TextID,"")

OnlyWhiteSpaces: not matches (TextID,"” (2!\\s*$) .+")
HelloWorld: matches (TextID, "\\s*[Hh]lello [Ww]orld\\s*")
HelloOrWorld: (matches (TextID,"\\s* [Hh]lello\\s*") or
matches (TextID, "\\s* [Ww]orld\\s*"))

Anything: not matches (TextID,"")

® Never: true

In this CBA ItemBuilder project, the option "Use first active hit per class (applies to all tasks)"
is activated, i.e. the last defined hit "Never" with the syntax (true) will never be active,
because before that, the hit "Anything" with the syntax not matches (TextID,"") will
always be active.

File: MatchesExampleScoring.zip





EPUB/media/file491.png
Number Series Test

In the tasks you are about to work on, you will see rows of numbers, which are interrupted or
terminated by blanks. The rows of numbers are based on certain rules. You have to find out
these rules and enter the correct number(s) in the blank space. Such a series of numbers could
look like this:

1 2 3

The correct answer here would be 4 and you would therefore put a 4 in the blank. Of course,
this is a very simple example and the number sequences in the task sheets will not be that
simple and may differ for different number sequences.

Nevertheless, please try to solve all the tasks. If you cannot solve a number line, please still
enter an answer by simply guessing. The point is not to be as fast as possible, but to complete
as many number sequences correctly as possible.

Now please press the "Next" button. Next \





EPUB/media/file466.png
Eliminate Wrong Choices Example

O Text for distractor A -
O Text for distractor B -

() Text for distractor C —

O Text for distractor D -

File: EliminateWrongChoicesExample.zip Next I





EPUB/media/file130.png





EPUB/media/file105.png
Hands-on: Create Master Project -- Start

Create Master Project

® 10 Steps to create a CBA ItemBuilder
Project

® The project will be used in subsequent
hands-ons as starting point ("Master
Project”)

ldea
® Read the instruction on screen
® Try to implement the steps
® \Watch the video if necessary

This hands-on will take 15 minutes.

https://unsplash.com/photos/uvvvKneSp_U?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink

FullScreen Let's Start






EPUB/media/file46.png
Free Navigation Example INFSHUGHORN) Unit1 | Unit2 | Unit3 | End

Instruction
In this test, questions are asked in three sections.
It is possible to jump back and forth between the sections at any time.

Now click on "Next >" to start answering.

Next >

File: FreeNavigationExample.zip





EPUB/media/file517.png
anstr e open
Edicanons Resobees)





EPUB/media/file199.png
& Edit All User Defined IDs.

! You have to close all open editors before executing this command.





EPUB/media/file16.png





EPUB/media/file547.png





EPUB/media/file63.png
Task Progress / Completion Example
Feedback about Task Progress

@ Task Progress
1: Visited 2: Not Visited 3: Not Visited 4: Not Visited

O Task Completion
Item 01

O Option A
O Option B
O Option C

O Option D Next I
File: TaskProgressExample.zip MI





EPUB/media/file393.png
Set InputValue-Operator Example

SingleLinelnputField (slifSource): - This is a default text, defined in the FSM.
SingleLinelnputField (slifTarget1):
SingleLinelnputField (slifTarget2):

Examples setinputValue(slifSource1, slifTarget1) setlnputValue(slifTarget1, slifSource1)

setlnputValue(slifSourceT, slifTarget2)

setlnputValue(slifSource1, slifSource1, "A different text, defined in the FSM.")

setlnputValue(slifTarget1, slifSource, "New text after copy.”)

File: SetinputValueOperatorExample.zip Reset





EPUB/media/file289.png
Link

{pageC: not CheckBox

pageD: CheckBoxID}





EPUB/media/file203.png
3 Delete from Disgram
=== B

2 ArowType >
5 Arange N
i Align >

Text Alignment >

G s
e f
©, Bring Forward

1 Apply Appearance Properties

[ Send Backward






EPUB/media/file363.png
Simple Conditional Link Example

Condtional Link 1

Checkbox1

Condtional Link 2

___VCheckboxz

Condtional Link 3

Checkbox3

Condtional Link 4

Condtional Link 5

Checkbox4

.

=

.

.

[arget

.

{
{
{1
{

{Targetl:
larget2:

larget2:

larget2:

[argetl:

{Targetl:

UserDefinedlds of components are shown on mouse-over.

Q

heckbox1
not Checkbox1}

true}
Checkbox?2
ot Checkbox2}

=)

Q

heckbox3

Q

heckbox4

Note: A regular link to page "Target2" is defined in parallel to the conditional link for this button.

File: SimpleConditionalLinkExample.zip

{Targetl:
Checkbox3)
{Target2:

(( (Checkboxl and Checkbox2) and
and not Checkbox4) }
true}





EPUB/media/file282.png
& Link Audio
Play media settings
Please select an existing intemal media resource or specify an

external media resource.

Internal Media _testfile.mp3.

External Media

Cancel






EPUB/media/file540.png





EPUB/media/file265.png





EPUB/media/file498.png
Overlapping Components: lllustration

Page Editor (Design-Time)

HTMLTextFielgd -
HTMLTextFleId
HTMLU e e

HTMLTextField 4

File: OverlappingComponentslllustration.zip

Iltem / Preview (Run-Time)

HTMLTextFieldy]
HTMLTextField™

HTM LTB

HTMLTextField 4






EPUB/media/file332.png





EPUB/media/file146.png
Example Creating Frame and Panel

By default, new pages are
created with a Frame and a
Panel of the defined CBA
Presentation Size.

This default can be deactivated
in the advanced section of the
new page dialog by deselecting
the option "Initialization": Create
Frame (and Panel).

Note that a component of type
Frame is required for each page.

File: VideoCreateFrameAndPanel.zip





EPUB/media/file95.png





EPUB/media/file421.png
ExternalPageFrame Call JavaScript Example

Button 1 This button triggers an FSM-event ("EV_Button1") that uses the call
callExternalPageFrame("EFS1","StaticMessage")-operator. The operator sends a PostMessage to

the embedded HTML-File "SimpleExternalPageFrame1.html". In this HTML file, an EventListener

waits for incoming PostMessages and shows an alert-window to print the received message JSON.

Button 2 This button triggers an FSM-event ("EV_Button2") that uses the call
callExternalPageFrame("EFS2",V_Input)-operator. The operator sends a PostMessage to the
. embedded HTML-File "SimpleExternalPageFrame2.html". In this HTML file, an EventListener waits
V_Input= o < for incoming PostMessages and shows an alert-window to print the received message JSON.

Button 3 This button triggers an FSM-event ("EV_Button3") that uses the call
callExternalPageFrame("EFS3","")-operator. The operator sends a PostMessage to the embedded
V_Output = HTML-File "SimpleExternalPageFrame3.html". In this HTML file, an EventListener waits for

incoming PostMessages, generates a random number between 0 and 99 and sends a
PostMessage back to assign the value to the FSM variable "V_Output".

File: ExternalPageFrameCallJSExample.zip





EPUB/media/file170.png
&) Execution layout settings

Layout settings
@ StartX-Page s mandatory forthe settings to take effect at exccution time.

Tasks Layout settings

[ nable X-Page layout

X-page layout type:

X-page size: | 200

Stider width: | 0

Siider color: | ||

Allow resize

NO settings for task [Task01] Apply Settings | | Close Dialog






EPUB/media/file87.png





EPUB/media/file209.png
Components to

> display text R

SimpleTextField
v

+»HTMILTextField

A
TextField





EPUB/media/file219.png





EPUB/media/file316.png
Page

Tabfolder ‘WebBrowser
Page Page
WebChildArea

12 components and
2 containers.

28 components and
9 containers.





EPUB/media/file308.png
® a2 cient app %+ °
C @ 127.00.1:7070/app/ Q % a
EX3 137,0,0.1:7070 says

The preview failed to do 2 task switch for this reason: There is no next
task. We are in task Tasko1 . I the missing task exists in your item

consider running a project preview.

File TaskRelstadCommandsExample 2o






EPUB/media/file62.png
Result Feedback Example

Solve these subtraction quizzes as fast as you can!

Start \

File: ResultFeedbackExample.zip





EPUB/media/file405.png
Transition Comparison Example

Coun
Coun
Coun

< << <

Coun

Coun
Coun
Coun

<< <<

Coun

State:

File: TransitionComparisonExample.zip

cer

cer

cer

cer

cer
cer

cer

cer

Entry A
Entry B
Exit A
Exit B

Internal A
Internal B
TransitionSelf A
TransitionSelf B

ST A

o O o =

o ©o o o

Mode:
State => State

i

EV B
Implicit internal
MY _Click I
Explicit internal

Show Finite-State Machine Rules...





EPUB/media/file152.png
& CBAltem Builder
File Edt Diogrom Broject Templates

|a~&-gv—-
[0 “Project View 8 Component it = Embedded HTML Explorer| & Renderer

v O [Frame] (0.0)
B tPanell 0.0)

Link Raised Event
Link Image
Set Cursor






EPUB/media/file555.png





EPUB/media/file347.png
VariableValueDisplay Layout Examples

0 Default 0 Font Size
0 Transparent 0 Font Color
0 Border Width 0 Underlined
_ Background Color 0 Italic

0 Alignment 0 Bold

File: VariableValueDisplayLayoutExamples.zip

Font Name

Mouse Over

Cursor

Frozen

Border Color

INTEGER





EPUB/media/file385.png
Conditional Rules Example

User-Defined Input:

a ST Regular =>

Vi= 0 - -
ST_Regular =>
7l ST Regular =>
V2= 0 - = _
ST_Regular =>
T ST_Regular =>
V3= o = ST_Regular =>
) ST_Regular =>

sli: cat

ST_Regular =>

ST_Regular =>
ST _Regular =>

EV_Click

Defined Rules:

ST_Regular{EV_Click :
ST_Regular{EV_Click :
ST_Regular{EV_Click :
ST_Regular{EV_Click :
ST_Regular{EV_Click :
ST_Regular{EV_Click :
ST_Regular{EV_Click :
ST_Regular{EV_Click :

[Vi==0]}
([Vl==1] and [V2==2])}
([Vl==1] or [V2==2]) }

(([V1l==5] or [V2==6]) and [V3==3])}
[Vl >= v2]}

[Vl + V2 == V3]}

[round (V1/2) == V1*2]}

[ifthenelse (matches (sli, "dog"),1,0)==1]}

ST_Regular{EV_Click :
ST_Regular{EV_Click }

([elapsedTime () > 50] and [V3==99])}

(see here which rule was activated)

File: ConditionalRulesExample.zip





EPUB/media/file482.png
Speech Recognition using Vosk in an 1

ExternalPageFrame

Press the button "Start Recognition (Language=German)" and give the
browser acccess to your computers microphone.

‘ Start Recognition (Language = GEMAN) ’

File: ExternalPageFrameVoskExample.zip

https://alphacephei.com/vosk/





EPUB/media/file121.png
Multiple-Choice Task

Select all alternatives that apply:

For which of the following entries a hypothetical rule applies?

. | Entry 1*
| | Entry 2
| Entry 3*

| | Entry 4





EPUB/media/cover_html.png





EPUB/media/file458.png
CSS Class Name Example

CSS (=Cascading Style
Sheets) code can be defined in
the section CSS Styles of the
Global Propetties:

| & Project Settings [u] X
Project Settings

(i) Some values cannot be changed since there are editors open
currently. Close all open editors before opening this dialog to

Project Settings Translations Icons  CSSStyles  Meta-Data

-mycssdemo:disabled {
color: rgb(205 213 225)!important;

|
\
‘

Cancel

File: CSSClassNameExample.zip

Components use the

specific CSS class added to

the Properties View (see:
Misc / CSS Class Name):

Property Value

Use Status Images 1= false
v |dentification

User Defined Id = btDemoWithCSS
v Misc

Css Class Name i= mycessdemo

Example: The following button uses the CSS class
"mycssdemo" to define the color for the text when the

button is frozen.
Color defined in CSS:
Default Color:

_btDemoWithCss_|
_ btDemoWithoutCSS |

SetFrozen





EPUB/media/file371.png





EPUB/media/file72.png





EPUB/media/file274.png
Image Examples

Panel
N AN AN AN AN AN AN/

DO OOXOX
>¢OA¢A AQ@@

00K

YOTOOK

®

File: ImageExamples.zip

TextField

[ Lorem ipsum dolor
sit amet,
consectetuer
adipiscing elit. Aenean
commodo ligula eget
dolor. Aenean massa.

ImageField

Buitions

(]
O @
O i

RadioButton





EPUB/media/file225.png
& Configure Embedded Link

Configure Embedded Link
Please specify the target page and the color attributes for the link representation.

Not visited link color

Select page Use default color for not visited links

page

Visited link color
Use default color for visited links.

Edit Condition)

oK Cancel






EPUB/media/file56.png
(e.g., define start value)

Score Estimate
Item(s) Ability

Select
Item(s)

Check Termination
Criteria

Item(s)

Optional: Estimate:

(final) Ability .






EPUB/media/file476.png





EPUB/media/file115.png
& RadioButtonGroup





EPUB/media/file509.png
@ | MyAssessment x4

=
Q
©»

1L}

« > C O D 1270013921

Feedback

Estimated Ability: 0.18 (SE 0.66)

© not solved
4 solved

Step (Test length)






EPUB/media/file500.png
& Save As Template

Save a Page as Template
@ Leading ortrailing whitespace is not allowed.

Template name:

oK

Cancel






EPUB/media/file243.png
& CBA lem Buider - SeiectableHTMLTextFieldsExample - Gword github\ CBAlkem uierBook 9 08\iems\SelectabieHTMLTextFiedsErampl,

- o x

File Edit Diagram Project ITemplates Utilties Help
O08eE 330/ @Frh|IdEEeHD Q
5| @) page.cham_diagram x| = O || properties x olElym § = 0
- Show Advanced P
9 Selectable HTMLTextFields Example 4| C Panet e —
=] —
coa = Core Property Value
HTML Text Field 01 HTML Text Field 02 v Misc
s | PRI e Class Name
B HTML Text Field 03 Frame Select Group Number
Input Valdation Event
c c Input Validation Patterm
Is Frozen
Is Single Select Member
Is Toggle
Multiple Select Mode
No Deselect
Selectable
Tab Index

perties

For Table of Standard type: Make table cells selectable. For select group members: make the component selectable.






EPUB/media/file379.png
Assign Events Example
This example shows the FSM events triggered by user interactions. Click one of the elements and

see the assigned events in the "Last event was..."-box. Press Ctrl / Strg + M to open the "State
Machine Debug Window." Move the mouse over a particular component to see the type.

Last event was...

Button (Is Toggle = false) I
Button (Is Toggle = true) I

(] Checkbox Link
O Radio Button A @ mo
Radio Button B O e
(O Radio Button O30«
InputField
» 0:00/0:00 :
SingleLinelnputField
Iltem 01 v 0 >
0 z
ListX Item 1 - 0
ListX Item 2 o Textfield o HTMLTextField
Lict¥ ltam 2 v
File One/1/1 Two /2 /1 Three / 3/ 1ll

File: AssignEventsExample.zip 1 2 3





EPUB/media/file353.png
Value Display Type
Value Map
Variable

~ Position
Height






EPUB/media/file281.png
Image Scaling in Panel Background Example

| childPage1

On the page "childPage1" an image of size
100x100 is set as background image for a
panel of size 400x200. Result: The image is
displayed several times (repeated).

childPage2 I

On the page "childPage2" the identical
image of size 100x100 is shown in a
ImageField of size 400x200. Result: The
image is scaled to 400x200 (but blurred and
distorted, as shown larger than in its natural
size and with different aspect ratio).

File: ImageScalinginPanelBackgroundExample.zip





EPUB/media/file264.png





EPUB/media/file354.png
MapBasedVariableDisplay Layout Examples

Default (nothing Default Default
defined .

efined) (nothing

defined) v

Default (nothing Transparent Default (nothing
defined) defined)
Default (nothing Border Width Default (nothing_
defined) defined)
Default (nothing Background Default (nothing
defined) Color defined)

Default (nothing ~ Alignment Default (nothing

defined) defined)

File: MapBasedVariableValueDisplayLayoutExamples.zip

Font Size

Font Color

Underlined

Italic

Bold

Default
(nothing
defined)

Default (nothing
defined)

Default (nothing
defined)

Default (nothing
defined)

Variable Value = 0 _ I + I Show Map

Font Name

Mouse Over

Cursor

Frozen

Border Color





EPUB/media/file168.png





EPUB/media/file39.png
Navigation Example: Full Page

] ] Change to
First Page (No Scrolling) example with
scrolling...
There could be a reading text, description of the task, or presentation of
task material on this page.
The main characteristic of the "Full Page ltems" presentation is that there
are only a minimum number of buttons for next and, if necessary, back
navigation.
Typically, this page would also contain the instruction text to proceed with

the item by clicking on the "Next"-button.
Next

File: FullPageNavigationExample.zip





EPUB/media/file131.png





EPUB/media/file23.png
Quick Start: Explore Scoring - Example 2

Question 1: Single-Chocie Task - Select C
O Option A
O Option B
O Option C
O Option D

Question 2: Multiple-Chocie Task - Select A and B

(J Option A
(J Option B
(J OptionC
(J Option D

Question 3: Constructed-Response Task - Enter D

File: QuickStartScoringExample2.zip

Variable1

Variable1Score

Variable2A
Variable2B
Variable2C
Variable2D

Variable2Score

Variable3

Variable3Score





EPUB/media/file40.png
Navigation Example: Forced Choice

Example 1

Example 2

Example 3

File: NavigationExampleForcedChoice.zip





EPUB/media/file426.png
Scoring Introduction - Example 1

Instruction
Select all animal(s).
(J Porsche This example item illustrates the use of hit-conditions
for scoring CBA ltemBuilder tasks. Three hits are defined:
(J Jaguar

(J Peugot ® Correct: Jaguar and Panda are selected (and no other options).

® \\rong: Item answered (i.e., any checkbox selected), but wrong.

(J Panda e Missing: No checkbox selected at any time.

The first hit (Correct) specifies the correct response:

Correct [( ((cbJaguar and cbPanda) and not cbPorsche) and not cbPeugot) (1)

If this condition is not met, the second hit (Wrong) checks if the item is in the state
"Answered" (i.e., if at any time a checkbox was selected and the assigned event EV._Answer
was triggered):

Wrong |is_last state (Answered) ()

Finally, the last condition is (trivial) defined as always fulfilled. This makes sense because the
hits are checked in the defined sequence. If the condition "Correct” and "Wrong" are not met,
the item is scored "Missing".

This example is based on the option "Use first active hit per class (applies to all tasks)".

File: ScoringlntroductionExample1.zip

s1a)e asuanboag





EPUB/media/file386.png
Example lllustrating the Change of Variable Values Using Operators

VariableValueDisplay linked Buttons with

to Variable "V_Example" Events

-1

+1

Reset

=42

File: ChangeVariablesByOperatorsExample.zip

=

Finite-State Machine Syntax Triggerd by Events
with set () - and reset () -Operators

 Running internal
EV Minus|set (V_Example,V Example-1)}

 Running internal
EV_Plus|set (V_Example,V Example+l) }

 Running internal
EV Reset|reset (V_Example) }

[ Running internal

3§7Value | set (V_Example, 42) }

Show Conditional Link Example





EPUB/media/file258.png





EPUB/media/file191.png





EPUB/media/file533.png





EPUB/media/file369.png
Link PageAreas Using Conditional Links Example

Th . th " b1 . h . th P A n sn Link "Sub1"
Is Is the page su shown In the FageArea 'main-. Link "Sub2"
Link to Page "sub2".

Note: The link is defined as conditional link to page "mainpage” the following
condition:

{mainpage: true|setEmbeddedPage (main, sub2) }

The white area is PageArea "main" on page "mainpage”.

File: LinkPageAreasUsingConditionalLinksExample.zip





EPUB/media/file210.png
[ Properties 52

P SimpleTextField

Core

Fonts and Main Color

Appearance






EPUB/media/file296.png
B
[
_

(Standard)Button and ImageButton Example

o Button A Button A

g

=

& Click one of the
Button B Button B buttons to see more

details.
S
E B Utton C B Utton C (J Show Buttons as "Frozen".

Toggle: false Toggle: true

File: ButtonAndimageButtonExample.zip





EPUB/media/file300.png
& Set Selected Background Color o

Set Selected Background Color

Activate/deactivate an altemate background color for ‘selected' state and
specify the color to use.

Use Selected Background Color attribute:
Colorto use:

Save Cancel






EPUB/media/file497.png
Search CBA ItemBuilder The following message is displayed if you try to start the CBA

Error Messages

‘ ] Search ’

;‘ 1/3 ;‘

ItemBuilder that is already running.
& Workspace busy X

Your item builder's workspace is busy.
Is there another item builder already running?
(You cannot start two concurrent item builder instances on the same workspace.)

Solution: Use Alt+Tab to find the CBA ItemBuilder instance.

More Information: Only one instance of each installed CBA
IltemBuilder can be executed simultaneously. This message
will be displayed if you try to start an already-running CBA
ItemBuilder a second time.

File: CBAltemBuilderErrorMessages.zip





EPUB/media/file185.png





EPUB/media/file136.png
& NewPage

Create a new page.

Please specify a name for the page. Click the 'Show Advanced... button for advanced
options.

PageNome: B[ page namd

oK

Cancel

& Newrage o

Create a new page.

Please specify a name for the page. Click the 'Show Advanced... button for advanced
options.

Page Name: 0| page_neme

Fiide Advanced,., | Advanced Settings

PageType [smple v
Tags: Olxpage
standardPage
Initialization: reate Frame (and Panel)
Iniialzston Settings
Height: 550
Width: )
Cresteas dialog? o, S

oK Cancel






EPUB/media/file77.png
& CBA Item Builder - myproject
File Edit Project Templotes Utiities Help

(OD=eBEE0 @ ¥zEe [Quick Access]
(& “Project View| [ Component Edit| ~=0 =8
v & myproject
(5] page1 [simple, standardPage]

& CBA Item Builder - myproject - o x
File Edit Project Templotes Utiities Help

(OD=eBEmE0 @ dzEe [Quick Access]
(& Project View| {8 Component it v =8 =n
v & myproject

[] pagel [simple, standardPage]

& CBA ltem Builder - myproject - o x
File Edit Diagram Project Templates Utiities Help
Do eEEEe@g dzae
| Fahoma s 7| A~ v - | @ Bivole || ENIED || ) [Quick Access
(& Project View| {8 Component it < = O || @ pagel.chaml diagram 33 | =8
v & myproject 4
[=] page1 [simple, standardPage]
- a X

& CoA e Buider - myproect

File Edit Diagram Project Jemplates Utiities Hel
Do eEEEe@g dzae
k Tahoma B 7| A~S s —| @ RivoB || || (T [Quick Access]
(& Project View| {8 Component it < = O || @ pagel.chaml diagram 33 | =8
v & myproject v
[ page [simple,standaraPage]
- a X

& CBA e Builder - myproject
rom Project Templates  Utilies Help

File Edit

aEpE=T =il - F=1K v g =|
[[segoeut ~[s BI\A S g~~~ | B BB EMIER ]| O [Quick Access]
(& Project View| {8 Component it a pagel.cbaml_diagram 57 \ =8
v & myproject 1 3
(=] pagel (simple,sandardPage] S
P Textield
O HMLTextField
1 1 (3 Button
©Tmer
/ Volucinput
=] Scletaucinput
] spimnertalucinput
L NumberelucDisply

+ ¥ < - 0> | LoTecvalueDisplay v






EPUB/media/file437.png
Drag-and-Drop Scoring using
variable in ()-operator
This item illustrates the formulation of hit conditions using FSM variables based on the

variable in ()-Operator. The values of the FSM-variables can be changed with drag-
and-drop interactions.

Put the dices in Hit-Definitions
descending order. ® NoDragAndDrop: variable in(V_DropCounter, 0)
e AscendingOrder: ( ( (variable in(V_1,2) and
— variable in(V_2,3)) and
o V_1=2 variable in(V_3,4)) and
L variable in(V_4,5))
SR e DescendingOrder: ( ( (variable in(V_1,5) and
.. V2=3 variable in(V_2,4)) and
(] variable in(V_3,3)) and
variable in(V_4,2))
[ N VvV .3=4 ® NoSpecificOrder: true
(I
— Drop-Counter
... VA4=5 o Number of Drop-Events countent in Variable
o0 V_DropCounter =

Notes: @ In this CBA ItemBuilder project the option "Use first active hit per class (applies to all tasks")
is enabled, i.e. the hit conditions are evaluated considering the order.
® Use Ctrl / Strg + S to open the "Scoring Debug Window", which shows the active hits
according to the hit definition shown above.
e Use Ctrl / Strg + M to open the "State Machine Debug Window", which shows the values of
the defined FSM-variables as well as the raised event names.

File: VariableAndDragAndDropScoring.zip





EPUB/media/file17.png
& Preview

Choose the Scope for the Preview
Please specify the scope for the preview:

Task

Run a preview starting with  specified task. Only this task and all
Oy ks folloving it will be available for task switches. You have to
1225 choose the task to start with here:

Task01

Project

OPrject  Run a project preview. This willstart it the firttask n thetem.

Alltasks will be available for task switches.

Page
Obage  Preview single page.Youhave tochoose he pagehere
pagel
Scaling Options
Scaling Mode None v
Horizontal lignment. Left °
Vertcalslignment Top °
()Show login dislog.

() Show navigation header bars (Not for page previev)
() Automaticalyfix non-unique UserDefinedids

() Generate trace entres for replay mode.

() Block zooming feature

Cancel






EPUB/media/file411.png
platform:/resource/Projects/global.emfstatemachine
~ + Machine VERSION_01_01
® Start ->
~ @ Running
v e X
® XStart
@ STXT-> X1
@STX2 > X2
~ = Regular
® RegularStart
@ ST_Page? -> Pagel
@ ST Page? -> Page2





EPUB/media/file392.png
Highlighting Operators Example

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean
massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec
quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec
pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a,
venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus.
Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu,
consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus.
Phasellus viverra nulla ut metus varius laoreet.

Conditional Links: | setHighlightable | |

Finite-State Machine: (Not Implemented in 9.8)

File: HighlightingOperatorsExample.zip





EPUB/media/file204.png
Custom Cursor Example

Example for different values of the property Cursor (only visible after moving the mouse

over one of the components):

/pointer/
/progress/ /alias/

/wait/

/copy/

/cell/

/move/
/crosshair/ /no-drop/

[text/ /grab/

File: CustomCursorExample.zip

/vertical-text/

/grabbing/

/all-scroll/

/col-resize/

/row-resize/
/n-resize/

/e-resize/

MyCursor.png

/w-resize/
/ne-resize/
/se-resize/
/zoom-in/
/zoom-out/

/none/





EPUB/media/file548.png





EPUB/media/file61.png
Raven's Progressive Matrices
Drag and Drop Example

Select the appropriate image that belongs to
the empty slot. Click the image or drag and
drop it to move the image to the open place.

File: RavenDragAndDropExample.zip

C[o]o
EE
A





EPUB/media/file112.png
Hands-on: Create Single-Choice Item -- Start

Create Single-Choice Item S

P,
W o

® 10 Steps to create a Single-Choice Item
in CBA Item Builder
® Scoring will also be included

ldea
® Read the instruction on screen
® Try to implement the steps
® \Watch the video if necessary

This hands-on will take 20 minutes.

https://unsplash.com/photos/uvvvKneSp_U?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink

FullScreen Let's Start






EPUB/media/file96.png
& CBA Item Builder - exsting_project
File Edit Project Templotes Utiities Help

(D260 @ dzEe

& “Project View | (B Component Edit| ] Embedded HTML Explorer|

Global properties.

=]
(% Browse Tosk and tem Score
[ Browse value maps
)

Edit State Machine.

& Rename Project

Change thie Project Name
Specify the new name for the project.

New Project Name: 8 mew_projectnamd]






EPUB/media/file53.png
E: Conditional Test Part

Prologue

Main

TASK(S), e.g., Instruction

TASK(S), e.g., ltems
TASK(S), e.g., Items

Prologue

TASK(S), e.g., Transition

TASK(S), e.g., ltems
TASK(S), e.g., Items

TASK(S), e.g., Break

Main

Prologue

TASK(S), e.g., Transition

TASK(S), e.g., ltems
TASK(S), e.g., Items

TASK(S), e.g., Farewell

Main

Example for between

part routing:

If

Condition (e.g. using Preload Variable “Consent”==true)






EPUB/media/file376.png
4 *State Machine @ | State Machine Rules

[ Resource Set
~ B platform:/resource/Projects/global.emfstatemachine

~ 4 Machine VERSION_01_01
@ <not set>

& Configure State

Confiure State Attributes

© Name is not valid: Only letters, digits, and underscores
are allowed. The first character must not be a digit.

State Type
@®@NORMAL O START O END

Name

Page to open| v

OK Cancel






EPUB/media/file10.png
& CBA Item Builder
Project Templates Utilities Help

E®0@rEI¥IZEe
&/ Renderer g-no

File Edit
Oole

@ Project View| - Embedded HTML Explorer,

[E Component Edit






EPUB/media/file279.png
Audio Format Tester

MP3

> 0:00/0:03 c——— ) Play MP3 |
0GG

> 0:00/0:03 c———— ) Play OGG |
WAV

> 0:00/0:03 c——— ) Play WAV |

The Resource Browser of CBA IltemBuilder allows to add audio files in MP3, OGG and WAV
formats to CBA ItemBuilder projects.

Please note that the audio files must also be supported by the respective browser and that the
hosting of the item content must be configured correctly so that the audio files can be played
without any problems.

File: AudioFormatTester.zip





EPUB/media/file333.png
Page: X1 (X-page) Page: Page1

Page: XDialog1

Link to page "X2"
defined as X-page

Page: Dialog1

Link to the page "Dialog2" defined as dialog.

Link to the page "Page".

Link to page "XDialog2"
defined as dialog
and as X-page

Button with the command 'CLOSE".

File: LinkDialogAndXDialogsExample.zip





EPUB/media/file147.png
& Preview failed.

describe here:
“The page does not contain a frame.

This i the path tothe place where we found the problem:
in page mypaged]

Preview fails because your item is inconsistent. Please try o fix the problem we.






EPUB/media/file457.png
& Project Settings o & Project Settings o
Project Settings. Project Settings.
Please edit the global project setings. Please edit the global project settings.
(To make an icon available here you have to include it into your project via the Resource Browser first) (To make an icon available here you have to include it into your project via the Resource Browser first)
Project Settings | Tansistions | lcons  CSSStyles  Mets-Data Project Settings Translations [1E0n% | CSSStyles  Mets-Data
Bookmark header Manage your bookmarks Bookmarktitle Bookmarks cut v copy
Bookmark Add button Add Bookmark Manage button Menage Paste ©| Back
Bookmark Delete button Delete Bookmark OK button ok ea— | T
Bookmark Cancel button Cancel Context Menu Back Back Add bookmark 21 Manage bookmark
Context Menu Forward Forward Context Menu Home Home
Bookmarked page <
Context Menu Cut cut Context Menu Copy Copy
Context Menu Paste Paste Tile of Error Message Box Error
OKin Error Message Box ok Spreadisheet Error Syntax
Spreadsheet Error Circular Circular dependencies in formula defintio  Spreadshest Eror Div0 Divd: Division by zero not possible.
Spreadisheet Error NaN Nal: Formula resut in Not a Numbervalu  Tree Menu Add Add
Tree Menu Rename Rename Tree Menu Delete Delete
tem D
ok Cancel ok Cancel






EPUB/media/file414.png
FSM Timer Example

Vertical Orientation = false

Vertical Orientation = true

Remaining Time: 2 seconds

Remaining Time: 2 seconds

File: FSMTimerExample.zip






EPUB/media/file236.png
v Misc
Control Icon Size
Css Class Name
Frame Select Group Number
Is Frozen
Label Distance
Label Position
Tab Index
Text Wrap






EPUB/media/file45.png
Navigation Example: Stimulus and Question

Unit 1 - Question 1/3

Instructions

Question 1

[J option A
(J oOption B
(J option C

AN

Stimulus
Text, Images, ... Scrollable Area...

Lorem ipsum dolor sit
amet, consectetuer

adipiscing elit. Aenean

Multimedia, e.g., cammada lianla anat
Audio...
» 0:00/0:00 :

File: NavigationExampleStimulusQuestion.zip

v





EPUB/media/file88.png





EPUB/media/file364.png
&

Link Page
Please specify the target page and the color atributes for thelink representation.

ink Page.

Not viited link color
Use defaut colorfor ot visted links
Select page
Main Visited link color

T
e — © Use defat colororvisted k.

O Use same color as for not vsited inks.
O Use explict colorspecifed here:

Edit Condition | | Drop Condition






EPUB/media/file232.png
Different item formats can be created using the generic components of checkbox and
radio buttons (in groups).

Examples from Moon et al. (2019):

Indicate wheather each property in the table is true for all rhombuses,
all isosceles trapezoids, both all rhombuses and all isosceles
trapezoids, or heither. Select all cells that apply.

Property True for all True for all
rhombuses isosceles
trapezoids

Diagonals bisect each other - -

DK .
Diagonals are congruent to each other I -
All sides are congruent - -

The sum of interior angles is 360° - -

Moon, J. A., Keehner, M., & Katz, I. R. (2019). Affordances of Item Formats and Their Effects on Test-Taker Cognition under Uncertainty. Educational
Measurement: Issues and Practice, 38(1), 54—62. https://doi.org/10.1111/emip.12229





EPUB/media/file275.png
& CBA Item Builder - ImageExamples - C:\work\github\CBAltemBuilderBool\ib\Q_05\iterms\ImageExamples.zip
File Edit Diagrem Project Templates Ut

ies Help

- o x
ColeBRR0 @M ¥ ZE @ i 1 |A~ &~ s - |@®|Bi-B-f-|] B ~ |[100% I |Quick Access|
& Project View [ Component Edit ||| Embedded HTML Explorer | &/ Renderer = 0 || @) page.cbaml_diagram 52 = 8 ||/ Properties 2 ™ v=08
Image Examples Image Examples /|| &) inputField
Panel TextField Buttons Panel TextField Buttons Core Property ~
Lorem ipsum dolor

sit amet,
consectetuer

OO YOX m— Input Validation Pattern
@o&%% ’%@%@5} Lorem psum oo o
et dolor sit amet, Read Only
edpiauig el Aoncs consectetuer Source InputId
do liguls ot
@§&° o m %@‘W< adiseng i, =

Aenean commodo L=

+ Posiion
Height
%?0 0 % ligula eget dolor. - i
AVA X
S '
Imagerisld RadioButton

. Tt
ImageField RadioButton Mouse Over
File: ImageExamples zip File: ImaceExamoles.zip

>

Position






EPUB/nav.xhtml

Open Computer-based Assessment with the CBA ItemBuilder

		[image: ]

		Preface		Why read this book

		Structure of the book

		Contributors

		Acknowledgments





		1 Introduction		1.1 Installation & Requirements

		1.2 Contact & Support

		1.3 Quick Start: Get the Right Version

		1.4 Quick Start: Preview Items		1.4.1 Basic Terminology

		1.4.2 Preview Item in Browser





		1.5 Quick Start: Explore Scoring		1.5.1 Basic Terminolgy

		1.5.2 Scoring Debug Window





		1.6 Quick Start: Explore Log Events		1.6.1 Basic Terminology

		1.6.2 Trace Debug Window





		1.7 Quick Start: Revise Item Content		1.7.1 Basic Terminology

		1.7.2 Change Content in Existing Project-Files





		1.8 CBA ItemBuilder for Software-Developers





		2 Principles of Computer-Based Assessment		2.1 Advantages & Benefits of CBA

		2.2 Standardized Response Formats		2.2.1 Mode Effects and Test-Equivalence

		2.2.2 Response Times and Time on Task

		2.2.3 Time Limits (Restrict Maximum Time)





		2.3 Innovative Item Types / Technology-Enhanced Items (TEI)

		2.4 Item Presentation and Navigation		2.4.1 Full Page Items

		2.4.2 Breaks / Stopp Items

		2.4.3 Within-Item Navigation

		2.4.4 Within-Unit Navigation

		2.4.5 Between-Unit / Test-Level Navigation

		2.4.6 Integrated Item Presentation





		2.5 Scoring and Calibration		2.5.1 Scoring of Items

		2.5.2 Missing Values

		2.5.3 Rapid Guessing

		2.5.4 Calibration of Items

		2.5.5 Ability Estimation

		2.5.6 Incorporation of Response Times





		2.6 Automated Item Generation

		2.7 (Automated) Test Assembly		2.7.1 Fixed Form Testing

		2.7.2 Booklet Designs and Rotations

		2.7.3 Multi-Stage Testing

		2.7.4 Computerized Adaptive Testing





		2.8 Log and Process Data		2.8.1 Basic Terminology

		2.8.2 Item Designs and Interpretation of Log Data

		2.8.3 Completeness of Log-Data

		2.8.4 Data Formats for Log Data

		2.8.5 Software Tools





		2.9 Feedback		2.9.1 Feedback during the Assessment

		2.9.2 Feedback after the Assessment





		2.10 Item and Test Security		2.10.1 Protection of Items and Tests

		2.10.2 Secure Test Deployment





		2.11 Design Principles of the CBA ItemBuilder		2.11.1 Content Experts as Item Developers

		2.11.2 Model-based Representation

		2.11.3 Separation of Layout and Logic

		2.11.4 Containers and Nesting









		3 Designing Items Using Static Content		3.1 Overview of the User Interface		3.1.1 Top: Main Menu and Toolbar

		3.1.2 Left: Project View, Component Edit, Embedded HTML Explorer and Design Pages with Basic Components

		3.1.3 Middle: Page Editor and Other Editor-Tabs

		3.1.4 Right: Properties, Tasks, Variables, Value Maps and Clipboard View





		3.2 CBA ItemBuilder Projects Files		3.2.1 Working with Project Files

		3.2.2 CBA Presentation Size





		3.3 Quick Start: Create Single Page Items		3.3.1 Create Master Project

		3.3.2 Create Single-Choice Item

		3.3.3 Create Multiple-Choice Item

		3.3.4 Create Text-Entry Item

		3.3.5 Create a Closing Page

		3.3.6 Create an Instruction Page





		3.4 Pages and Page Types		3.4.1 Basic Page Type Simple Page

		3.4.2 Pages Flagged as xPage





		3.5 Basic Containers (Frame, Panel and PageArea)		3.5.1 Top-Level Component: Frame

		3.5.2 Containers of Type Panel

		3.5.3 Auto-Layout-Panels

		3.5.4 Embedded Pages in PageAreas





		3.6 Tasks as Entry Points		3.6.1 Task Definition in the Tasks-View

		3.6.2 Layout Settings for Tasks

		3.6.3 Navigation Witin and Between Tasks





		3.7 Layout Pages using Components		3.7.1 Positioning of Components

		3.7.2 Clipboard and Duplication of Components

		3.7.3 Selecting Components using the Component View

		3.7.4 Naming Components with UserDefinedIds

		3.7.5 Design Pages with Basic Components

		3.7.6 Defining the Cursor of Components

		3.7.7 Defining the Tab-Order of Components





		3.8 Components to Display Text		3.8.1 Text of Same Size: SimpleTextField

		3.8.2 Formated Text: HTMLTextField

		3.8.3 Formated Text and Highlighting (TextField)

		3.8.4 Comparison of Components for Displaying Text





		3.9 Components to Collect Responses		3.9.1 Components for Text Responses

		3.9.2 Single-Choice Responses: RadioButtonGroup and RadioButtons

		3.9.3 Multiple-Choice Responses: Checkbox

		3.9.4 Single- or Multiple-Choice using Frame Select Groups

		3.9.5 Single- or Multiple-Choice using ComboBoxes and Lists

		3.9.6 Selectable Components in Panels or ImageMaps

		3.9.7 Single-Choices as MenuBar with Menu

		3.9.8 Collect Responses using Table and TableCellEditor

		3.9.9 Collect Responses using Tree, TreeView and TreeChildArea

		3.9.10 Graphical Single- or Multiple-Choice Formats using ImageMaps





		3.10 Images and Multimedia Components		3.10.1 Manage Ressources

		3.10.2 Components to Show Images

		3.10.3 Components for Audio and Video Content





		3.11 Links between Pages		3.11.1 Simple Components to Link Pages

		3.11.2 Button-Component

		3.11.3 Links with other Compoments

		3.11.4 Advanced Linking Scenarios





		3.12 Runtime Commands		3.12.1 Task-related Commands

		3.12.2 Dialog-related Commands

		3.12.3 Fullscreen-related Commands

		3.12.4 Clipboard-related Commands





		3.13 Components for Special Page Types		3.13.1 Tabfoler and Taskbar Pages

		3.13.2 Browser Pages (Web Browser and Web Child)





		3.14 Embedding HTML Content		3.14.1 Compoment ExternalPageFrame

		3.14.2 Using the Embedded HTML Explorer





		3.15 Pages as Dialogs (Popups)		3.15.1 Properties of Dialogs

		3.15.2 Opening and Closing Dialogs

		3.15.3 Links in Dialogs









		4 Enrichting Items using Dynamic Content		4.1 Syntax Overview		4.1.1 Basic Syntax Elements

		4.1.2 Comments

		4.1.3 Logical Expressions and Bracketing

		4.1.4 UserDefinedIds of Nested Pages in Syntax

		4.1.5 Argument Indices





		4.2 Variables and Value Maps		4.2.1 Introduction

		4.2.2 Value Inputs

		4.2.3 Variable Value Displays

		4.2.4 Value Maps

		4.2.5 Maps-based Variable Displays

		4.2.6 Drag-and-Drop

		4.2.7 Dynamic Text in HTMLTextFields





		4.3 Conditional Links		4.3.1 Introduction

		4.3.2 Quick Start (Continued): Feedback Using Conditional Links for Single Page Items

		4.3.3 Trigger Actions in Links using Operators

		4.3.4 Link PageAreas using Conditional Links





		4.4 Finite-State Machine(s)		4.4.1 Introduction

		4.4.2 States

		4.4.3 Events

		4.4.4 Rules

		4.4.5 Condional Rules (Guards)

		4.4.6 Operators

		4.4.7 Trigger Operators without Transitions

		4.4.8 Nesting Finite-State Machines (in Regions)

		4.4.9 Assignment of Pages to States

		4.4.10 Timer Component





		4.5 Task Initialization Syntax

		4.6 Interactive Content in ExternalPageFrames		4.6.1 Package External Content for CBA ItemBuilder

		4.6.2 Communication between with ExternalPageFrames (JavaScript) and Finite-State Machine

		4.6.3 Provide Information to the Finite-State Machine from JavaScript

		4.6.4 Call JavaScript-Function of ExternalPageFrames from Finite-State Machine(s)

		4.6.5 Provide ExternalPageFrames-State for Persistence (getState/setState)









		5 Scoring of Tasks		5.1 Terminology, Concepts and User Interface

		5.2 Scoring using FSM Variables

		5.3 Definition of Explicit Scoring Rules		5.3.1 UserDefinedId's as String Literals

		5.3.2 Syntax for Scoring Rules

		5.3.3 Sequential Evaluation of Scoring Rules

		5.3.4 Use of Text Responses in Scoring Rules

		5.3.5 Use of FSM-Variables in Scoring Rules

		5.3.6 Use of Positions for Free Drag-and-Drop in Scoring Rules

		5.3.7 Use of Events, States and Interaction in Scoring Rules

		5.3.8 Use of Specific Operators in Scoring Rules

		5.3.9 Note on Scoring with PageAreas

		5.3.10 Scoring Rules and Result Text

		5.3.11 Missing Value Coding for Tasks with Multiple Pages





		5.4 Automatically Generated Variables		5.4.1 Scoring Complete Tasks with Weights





		5.5 Checklist and Complete Workflow





		6 Recipes and Examples		6.1 Regular Expressions		6.1.1 Valid UserDefinedIds as Regular Expression

		6.1.2 Scoring (Text) Responses with Regular Expressions

		6.1.3 Input Validation with Recuglar Expressions





		6.2 Ressources Files		6.2.1 Preparing Image Files

		6.2.2 Preparing Audio and Video Files





		6.3 Global Properties		6.3.1 Project Settings

		6.3.2 Translations and Icons

		6.3.3 CSS Styles

		6.3.4 Metadata (about Content)





		6.4 FSM and Conditional Link Syntax Examples		6.4.1 Create Animated Instructions

		6.4.2 Adaptivity Within Tasks using Conditional Links

		6.4.3 Hiding/Showing Components on Pages

		6.4.4 Approaches to Show Additional Content

		6.4.5 Implement Time Limits for Tasks

		6.4.6 Navigation Restriction

		6.4.7 Video with Built In Questions

		6.4.8 Click-Sensitive Labels

		6.4.9 Contextualized Multiple-Choice Items

		6.4.10 Shuffle Response Options using ValueMaps





		6.5 Calculators Examples		6.5.1 Basic Calculator using Finite-State Machine

		6.5.2 Embedding Calculator using ExternalPageFrame





		6.6 ExternalPageFrame Examples		6.6.1 Continous Sound using Buttons in ExternalPageFrame

		6.6.2 Alternative Editors as ExternalPageFrame

		6.6.3 Adding Speech Recognition using ExternalPageFrame

		6.6.4 Showing HTML5 Package (H5P) using ExternalPageFrame

		6.6.5 Including GeoGebra Applets using ExternalPageFrame

		6.6.6 Incluing QTI Item Content using ExternalPageFrame

		6.6.7 Including SurveyJS Questionnaires using ExternalPageFrame





		6.7 Adaptive Testing with the CBA ItemBuilder		6.7.1 Adaptive Testing within CBA ItemBuilder Tasks

		6.7.2 Adaptive Testing across CBA ItemBuilder Tasks





		6.8 (More) Efficient use CBA ItemBuilder		6.8.1 Window Management

		6.8.2 Available Fonts and Font-List

		6.8.3 Color Codes

		6.8.4 Error Messages

		6.8.5 Hints for Designing Interactive Items

		6.8.6 Export and import Pages

		6.8.7 Working with Page-Templates

		6.8.8 How to run two CBA ItemBuilder Simultanously





		6.9 Creating Assessments in Multiple Languages





		7 Test Assembly and Deployment		7.1 Quick-Start: Assessments using R (and Shiny)

		7.2 (Technical) Terminology and Concepts		7.2.1 Deployment Mode (Online, Offline, Cached and Mobile)

		7.2.2 Browser Requirements and Availability of (Embedded) Content

		7.2.3 Fullscreen-Mode / Kiosk-Mode

		7.2.4 Interviewer-Menu, (Live) Dashboard and (Remote) Proctoring

		7.2.5 Input and Pointing Device

		7.2.6 Authentification / Account Management

		7.2.7 Task-Flow and Test Assembly

		7.2.8 Time Limits across Tasks

		7.2.9 Date Storage and Test-Resume





		7.3 Using CBA ItemBuilder Items with R (Shiny Package)		7.3.1 Use of CBA ItemBuilder Project Files in ShinyItemBuilder

		7.3.2 Start and End of Assessments using ShinyItemBuilder

		7.3.3 Define Sequencing / Navigation using ShinyItemBuilder

		7.3.4 Score Responses in R

		7.3.5 Feedback in R using Markdown/knitr

		7.3.6 Data Storage and Data Access

		7.3.7 Side Note: Interactively Inspect Log Events of CBA ItemBuilder Tasks





		7.4 Using CBA ItemBuilder Items with TAO (using Portable Custom Interactions)		7.4.1 Prepare CBA ItemBuilder Project Files for fastib2pci-Converter

		7.4.2 Generating PCI-Components using fastib2pci-Converter

		7.4.3 Flavors of PCI-Components Created by fastib2pci-Converter

		7.4.4 Side Note: Archive Assessment Content using GitHub Static Pages





		7.5 Using CBA ItemBuilder Items with the IRTlib-Software		7.5.1 IRTlib-Editor vs. IRTlib-Player

		7.5.2 Runtime Requirements (Offline and Online)

		7.5.3 Study Configuration

		7.5.4 Configuration of CBA ItemBuilder Test Parts

		7.5.5 Configuration of Item Pools

		7.5.6 Configuration of Codebooks

		7.5.7 Data Collected by the IRTlib-Software

		7.5.8 Integration into Learning Management Systems





		7.6 Using CBA ItemBuilder Items in SCORM Packages (with xAPI)		7.6.1 Prepare CBA ItemBuilder Project Files for fastib2scorm-Converter

		7.6.2 Generating SCORM Packages using fastib2scorm-Converter

		7.6.3 General Data Provided to the LMS

		7.6.4 Report Scoring Results Provided by CBA ItemBuilder Tasks to the LMS

		7.6.5 Mapping of Scoring Result to Indicate Success

		7.6.6 Trace-Data using xAPI-Statements





		7.7 Using CBA ItemBuilder Items in Custom Web Applications (Taskplayer API)





		8 Assessment Cycle and Workflows		8.1 Planning of CBA Projects		8.1.1 Overall Planing and Preparation

		8.1.2 From Idea to Implementation





		8.2 Distributing Content to Project Files and Tasks

		8.3 IT-Management of CBA Projects		8.3.1 Use of Project Management Software

		8.3.2 Use of Version Control Software

		8.3.3 Working with Project Files as ZIP Archives

		8.3.4 Use of Continuous Integration/Continuous Delivery





		8.4 Testing CBA Projects		8.4.1 Testing Cross-Browser Compatibility

		8.4.2 Testing Assessments Using Synthetic Data





		8.5 Running Assessments

		8.6 Data Processing after Assessments

		8.7 Documentation and Archiving of Computer-Based Assessments		8.7.1 Archiving CBA Software to Document Datasets

		8.7.2 Dedicated Approaches for Documenting CBA Data

		8.7.3 Approaches to Archive or Share Assessments for Re-Use

		8.7.4 Assessment Content as Open Educational Ressources (OER)









		Closing Chapter		How to Share?

		How to Contribute?





		Appendix

		9 Glossary of Terms

		10 Useful Tables		10.1 Main Menus

		10.2 Operators

		10.3 Regular Expression Symbols

		10.4 Technical Configuration

		10.5 CBA ItemBuilder Versions

		10.6 Component Register

		10.7 Documenetation Log Events





		References





  
    		
      Title Page
    


    		
      Cover
    


  





EPUB/media/file321.png
Task 1

Use the information
on the website to
answer the following
question:

How often is the
word "impsum”

mentioned in the
filler text?

times.

End Task

Q Home http://www.example.org/Home

Home

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
erat, sed diam voluptua. At vero eos et accusam et justo duo dolores
et ea rebum (page 1). Stet clita kasd gubergren, no sea takimata
sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet,
consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt
ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero
eos et accusam et justo duo dolores et ea rebum. Stet clita kasd
gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet (

page 2).

File: WebBrowserAndXPageExample.zip Home | Impessum | Sitemap






EPUB/media/file542.png





EPUB/media/file348.png





EPUB/media/file562.png





EPUB/media/file127.png





EPUB/media/file429.png
& CBA ftem Builder - ScoringlntroductionExample - C:work\github\CBAltemBuilderook\io\d_09\items\ScoringintroductionExempleT.zip - o x

Q

(4 asial x | =5

2] Condition - <Correct> X |

=(((cblaguar and cbPanda) and not cbPorsche)
and not cbPeugot)

.

5] Condition - <Wrong> X |

is_last_state(Answered)

-] Condition - <Omitted> x

true

8 Use first active hit per class (applies to all tasks). () Use fist active miss per class (appliesto all tasks

New  Deete || Open | AddHit || AddMiss  EditClasses | Preview | L
Name Minkiits StartPage StrtX-Page  Scori. ScoredTask
Taskol 0 page

Hits
Delete open | & ¥






EPUB/media/file341.png
& CBA Item Builder - project
File Edit Project Templates Utilities Help
ColeEE0@eh dzEe

[m] X

Quick Access|

@ *Project View 8 Component ... |- Embedded H...

2 Renderer

=0

& et

[l Variables 2

=0

Variables

The upper section lists all available Variables and their Named Values.

Name Value
V_Variable01 100
V_Variable02 0.5

V_ Variable04  true

V_Variable03  This is the default value.

Type
INTEGER
NUMBER
STRING
BOOLEAN

Declaring Component

Add Variable  Add Named Value

Edit

Delete






EPUB/media/file305.png
UTTON COMPONENT

File >

dit >
Delete from Diagram
% Delete from Model

Format >
et Auto Layout
Set Selected Background Color
Edit Text

ink Select Event
Set Cursor
Attach ScaleValuelnput

[ Show Propertes View

Properties





EPUB/media/file120.png





EPUB/media/file384.png
FSM First Intro Example utton B

Button A B
(Linked to EV_A) (Linked to EV_B)

") EV_A: Show Dialog. Value of V =0
—>
EV B

EV B lT EV B 2 EV_A: Increase
variable V by one.

File: FSMFirstintroExample.zip





EPUB/media/file291.png





EPUB/media/file260.png
<7 ImageArea





EPUB/media/file68.png
& CBA Item Builder
File Edit Project Templates Utilities Help.
ODeEMEMe @R IBES

(& Project View| [ Embedded .. | Renderer| = O

g

8 Component ] =5






EPUB/media/file163.png
Example for Using PageAreas of Different Size (with Scrolling)

& Page Size Warning x
“ageArea

ihe page The following pages exceed the configured overal presentation area (height x with):

Do you want to continue with the Preview?

File: PageAreaExample zip





EPUB/media/file25.png
‘Tracing Debug Window

Tacing data ot astoes o sener st

211
2iTapsa355-0100 U509

T T

e ruimeCompatiiy Version 731 nam' QuickSanplrLogging”“pages™ [T ame'page”
yps™ CoaContainar confiposion” -0y Weth-540 haight-530 Tort T nams'Segos
. UP2e1 aignmantorzonl™ et ol e Talc Jale” undarined e “color e dea
3 sseuonop PSSR [defaur rgba2SS 255 255 1)) bordar sy “nona” D rads”D color { datautrghal’
e sl slacrad e iddenfale] 0 mage" dsplayode”none’, sent
CtipTace"false"ype" Contaiar | “chaChldren" [ '~ Coacomainar“coni'{ psiion 109
U1 slgnmantiorzontl e oo
211
2T20sE4362:0100
211
aimansa6300-0100 P

o Tkt secings AlowscoreDebugging e AlowTaceDsbugging e AlowFSMDebugging e ShowTs

B

Truncate Log | Refresh
<« I






EPUB/media/file73.png





EPUB/media/file485.png
External Page Frame with H5P Integration Example

Is this false?

O True O False

® Check

File: ExternalPageFrameH5PIntegrationExample.zip





EPUB/media/file442.png
Example for Single and Multiple-Choice Scoring Page Visits: xJ

Page 1: 1

Single Choice Page 2 0
Page 3: o0

O Option A (Item 1 - ID = Item01A) Page4: 0

O Option B (Item 1 - ID = Item01B)
O Option C (Item 1 - ID = Item01C)
O Option D (Item 1 - ID = ltem01D)

File: SimpleMCScoringExample.zip Page1





EPUB/media/file549.png





EPUB/media/file132.png
Welcome.





EPUB/media/file107.png
40 HTMLTextField





EPUB/media/file205.png
@ *page.chaml_diagram ¢ |

Custom Cursor Example
Example for different values of the property cursor

&) . ] P
@ Add Note
File >
i >
Edit
% Delete from Diagram

% Delete from Model

File: CustomCursorEx: Format >
Set Auto Layout
Link Raised Event
Link Image

) Show Properties View

Properties






EPUB/media/file175.png





EPUB/media/file361.png
Dynamic Text Example Simple

NumberValueDisplay for Variable V_Example:

1 NI

Variable value as dynamic text (i.e.,
${FSMVariable.V_Example}) on the current

page:
Variable value is 1

Show dialog with dynamic text I

File: DynamicTextExampleSimple.zip

Note that in the current version of the CBA ltemBuilder, dynamic
texts are not automatically updated. A refresh is triggered, if the
following checkbox is selected:

Update components to display dynamic text

If the checkbox is not selected, dynamic text fields are updated
on click or on page chage. A page chage is also triggered, when
a dialog page is opened.

Variable value as dynamic text (i.e.,
${FSMVariable.V_Example}) in a
page area:

Variable value is 1





EPUB/media/file248.png





EPUB/media/file263.png
[ ] AnchorPoint





EPUB/media/file220.png





EPUB/media/file558.png





EPUB/media/file80.png





EPUB/media/file182.png





EPUB/media/file329.png
This item
illustrates the
use of dialogs.

Click OK to see
more examples!






EPUB/media/file461.png
Sequence of Instruction Steps Example

Start I Audio one.mp3: This is part one of the instruction, played while the finite-
state machine is in the state "One".

Audio two.mp3: This is part two of the instruction, played while the finite-
state machine is in the state "Two". State two was entered, after the audio
component used to play the audio file in state "One" raised an "end event".

Audio three.mp3: After the second step of the audio-instruction is
completed, the finite-state machine changes to state "Three"and plays
this last part of the audio instruction.

Visualization of the current state
using an TmageValudDisplay: U8 - NotStarted «———

EV_Start
Click here and hit Ctrl / Strg + M
to open the "State Machine
Debug Window".

@58y NI

EV_AudioOnefinished

EV_AudioTwoFinished ’

- ( Instruction
~ \_Finished

EV_AudioThreefinished

File: SequenceOfinstructionStepsExample.zip





EPUB/media/file178.png
CBA Presentation
Size Hight

CBA Presentation Size Width

Regular Page

Frame Width
(Regular Page)

Frame Border Width
(Regular Page)

CBA Presentation Frame Height
Size Hight (X-Page)

Frame Border Width
(X-Page)

CBA Presentation Size Width
X-Page Size

Frame

X-Page Regular Page

Frame Frame Width
Width (Regular Page)

Slider Width

Frame Height
(Regular Page)

Frame Border Width
(Regular Page)

Frame Height
(Regular Page)

Frame Border Width
(Regular Page)






EPUB/media/file449.png
& CBAltem Builder - InputValidationinputFieldExample
File Edit Diagram Project Templates Urilies Help

EEE @0 ¥2E® LAk 9 B R
@p @c|oE] = O @ pagecoaml diagram

~ @ Inpuvalidationinpy | INteger Number .
[=) page [simple]

Only Letters, Blanks and Digits

o E D

. :

Length Restricted Decimal Number (max 3 dg_‘ s,

<
The Input Validation Pattem of the Component

[Quick Access|

E»E - -0

Valve a
5182396102

o9
' false
" false.

vl R
= 0 | (D Propertes & o]
|| @ SingleLinelnputField
095 Core Property
User Defined 1d
[a-2A-209)" M
Input Validation Patter
— s Frozen
Foor s Single Select Member
IsToggle
(10-91.10-912)7 Read Only
with . or ) Selected Background Colc'®
(0d(1,3)01106(02) Source Iput Id
~ position

<






EPUB/media/file160.png
Example Adding PageArea to Page

PageAreas can only be added to
Frames. The automatically
generated Panel fills the Frame
perfectly. To add a PageArea to
a Frame, a Panel that completely
fills in the Frame needs to be
resized or removed. As soon as
the Frame can be selected, a
PageArea can be added.

File: VideoAddPageAreaToPage.zip





EPUB/media/file135.png
& CoA e Buider - project
e Edt Project Templstes Udities Help

@gldzEe






EPUB/media/file534.png





EPUB/media/file7.png
CBA ltemBuilder Installation Wizard

After starting "CBAitemBuilder-{version}-
windows-installer.exe", the application is
installed in five steps. No admin rights are
required because the software is installed
in the appdata user directory.

File: InstallDemoWinVersion9_0.zip

Step 4: Wizard copies all required files to the target directory





EPUB/media/file76.png





EPUB/media/file190.png





EPUB/media/file33.png
lllustration of selected interaction types as defined by the Question and Test
Interoperability (QTI) standard:

Choice Interaction Choice Interaction (Multiple Responses)
(Multiple Responses)

. . The Centre for technology-based assessment (TBA) is located at DIPF | Leibniz
CI‘_\OICG Interaction Institute for Research an%ylnformation in EducaStion, )Frankfurt am Main, (-!v‘ermany.
(Single Response) TBA is responsible for the CBA ItemBuilder, an item-authoring tool for computer-
based assessment (CBA).
Text Entry Interaction
At which places is the DIPF located?

Extend Text
Entry Interaction

D Bamberg
GapMatch Interaction (] Berlin
Associate Interaction [ el

D Frankfurt

Order Interaction
Match Interaction
HotText Interaction
Inline Choice Interaction

Slider Interaction

Important note: The CBA ltemBuilder does not use the IMS QTI format, but you Vi ingl ith Il
can create items that work analogously to the QTl interaction types. Iew as single page with scrolling ...





EPUB/media/file406.png
Nested FSMs Example

v 4 Machine VERSION_01_01
@ ST_OuterStart
v @ ST_OuterMain
v & Regionl
@ ST_Nested1Start
@ ST_Nested1Statel
@ ST_Nested1State2
v & Region2
@ ST_Nested2Start
@ ST_Nested2Statel
@ ST_Nested2State2
@ ST_OuterBreak
Outer: ST_OuterMain

File: NestedFSMsExample.zip

E EV_Click1 | EV_Click2 |

Events: EV_Timed 3, EV_Clickl, EV_Click2;
Rules: ST_OuterStart->ST_OuterMain{true} // Outer FSM

ST_OuterMain => ST_OuterBreak{EV_Click2}
ST_OuterBreak => ST_OuterMain{EV_Click2}

ST_NestedlStart -> ST_NestedlStatel{true} // Region 1
ST_NestedlStatel => ST_NestedlState2{EV_Timed}
ST_NestedlState2 => ST_NestedlStatel{EV_Timed}

ST_Nested2Start -> ST_Nested2Statel{true} // Region 2
ST_Nested2Statel => ST_Nested2State2{EV_Clickl}
ST_Nested2State2 => ST_Nested2Statel{EV_Clickl}

Region 1: State = ST_Nested1State1
Region 2: State = ST_Nested2State1





EPUB/media/file233.png
RadioButton-Examples

illustrating the properties 'Border Width'

and 'Is Transparent'.

O optionA | O Option B
O optionA (O Option B
O optionA (O Option B
O optionA (O Option B
O optionA (O Option B

File: RadioButtonExample.zip

©)
O
O
O
@)

Option C

Option C

Option C

Option C

Option C

RadioButtonGroup
Border Is
Width Transparent
2 false
2 false
2 true
2 true
0 true

RadioButton
Border Is
Width Transparent
2 false
0 false
0 false
0 true
0 true

Set all RadioButtons frozen!





EPUB/media/file357.png
Drag-and-Drop Example Dragged Element: No Element.
Illustrating the Use of Variables

Variable V_1=2 Variable V_2=3 Variable V_3=4
File: DragAndDroplllustratingVariablesExample.zip





EPUB/media/file314.png





EPUB/media/file111.png
Headline

Content






EPUB/media/file383.png
Delay Forward Navigation Example

This item illustrates how a button needed for navigation ("Next" button) can be activated
after a time defined in the finite state machine (e.g., 5 sec.).

For illustration it is implemented with an event that is
triggered every second. A more accurate time
measurement is achieved if the event is triggered only
once, after the desired time.

Every second a variable is increased by 1. When the
variable has reached a value > 4, the button is activataed
with the unsetFrozen () operator.

The value of the variable is displayed here: 5 sec. Reset
ey i Next

File: DelayForwardNavigationExample.zip






EPUB/media/file197.png
& CBA tem Builder - Scalise2006aFigurel2

- o x
Fie Edt Diagram Project Templotes Utiities Help
BE @ 0dzEe L
BE e f | A B sy~ | g - |[100% | [Quick Access
= 1 Properties 52 | mlesxm v= 8
© RadioButton

L M e 8

n ~ Identification

elect the order in which you would simplify the [Fr— User Defined Id
following expression: v Misc
I Frozen
B4R G )G (27 Selected Background Col
Text Wrap.
~ Position
Height
st [2nd 3rd | v
1 A) Do all mufiiplications from left to righ :
B) Do all additions and substractions fr v Tet .
v Mouce Over
< > < >

An 1D ssigned to the component by the item author and used to...nditional link task nitalzation, hit/miss,state machine).






EPUB/media/file154.png
& CBA Item Builder - o X

File Edit Diagram Project Templates Utiities Help
O0SEEH0 @RMIzEe

Segoe Ul Vo VB slavay gy | Bivge g B v |[4% v @ [QuickAccess]

"= 8 Prfec View 8 Component £t = 1 | @ “poget cbom_sogram 53| o

= v O [Framel 00
5| v D3Pm0

> 4 [GridArea] (0.0)
2] v 4 [GridAreal (50,150)
~ @ tPanell 0.0

O [Button) (690.3%0)

+ [Gridarea] (974,150)
+ [GridAreal (50,0)
+ [Grigarea] (974,0)
+ [GridArea] (50,618)
+ [Gridhrea] (974618)






EPUB/media/file340.png





EPUB/media/file162.png
& Link Embedded Page
Embedded Page

Please speciy the page to be embedded.






EPUB/media/file306.png
& Set Runtime Command X

Set Runtime Command
Please specify the runtime command to be activated by the component,

BACK_TASK
|CANCEL FULLSCREEN
CANCELTASK

cLose
|CLOSE_AND_NEXT_TASK
copy

cut

NEXT_TASK

PASTE

SEARCH
TRIGGER_FULLSCREEN






EPUB/media/file235.png
& Configure Select Groups X
Configure Select Groups

Configure the Select Groups of the Frame

Number Selectable Multiple Select No Deselect ~ Description
0 - - - Pattern A (Radiobuttons)

1 v - - Pattern B (Radiobuttons)

2 v v - Pattern C (Radiobuttons)

3 v - v Pattern D (Radiobuttons)

4 v v v Pattern E (Radiobuttons)

5 - - - Pattern A (Checkboxes)

6 v - - Pattern B (Checkbosxes)

7 v v - Pattern C (Checkboxes)

8 v - v Pattern D (Checkboxes)

9 v v v Pattern E (Checkboxes)

Add| |Delete |Up| Down

Save Cancel






EPUB/media/file278.png
Image Ressources Example

ﬂ
ﬂ

File: ImageRessourcesExample.zip





EPUB/media/file26.png
Quick Start: Explore Log Events

Example Task: Which of the following three options is
correct?
Select the answer by clicking on one of the buttons.

Option A

Option B

Option C

Please note that the key combination Ctrl + Yor strg + Y works
only if the input focus (cursor) is inside the item. Therefore, you should
left-click on click here before you enter the key combination.

File: QuickStartExplorLogging.zip





EPUB/media/file499.png
(& Projec... [ Embed...| £ Renderer| =

o

& project name
=1 naae name femole tandardPage]

Open page

Save page

Save page a5 template
Export page

Preview page

Page Settings

O NEd BE

Delete page





EPUB/media/file276.png
& CBA Item Builder - ImageRessourcesExample - o X
File Edit Project Templates Utilities Help

Do R @veyFEe s |Quick Access|

55 =
LR EET bs.m.mum

~ B ImageRessourcesE
[=) page [simple]






EPUB/media/file227.png
MathJax Display in TextFields Example

a%o {tex}a \ne 0{/tex}

xn+ynzzn {tex} x"n + y*“n = z"n{/tex}
1 {tex}\sagrt{\frac{1l}{\frac{1l}{2}}}{/tex}
1
2

2 5,3:‘? {tex}2.5 \cdot 3 = ?2{/tex}

File: MathJaxExample.zip (See www.mathjax.org for more information on MathJax formulas).





EPUB/media/file462.png
Adaptivity with Conditional Linking Example
This item illustrates a short sequence of 5 out of 9 tasks whose selection takes into
account the tasks already solved in a fixed branching tree.

After the first three tasks, placeholders are built in, which could be replaced by
instructions or motivational feedback, for example.

The last two tasks are administered without feedback and could represent a
measurement of success.

Start

File: ConditionalLinkingAdaptivityExample.zip





EPUB/media/file413.png
Controlled Presentation Time Example (page1)

In this example, pages are displayed for a defined time by
switching states with timed FSM Events, each state assigned Start
to a particular page. Click start to begin.

States: Rules:
® ST Start Events: EV_Start, EV_Five 5.0, EV_Twenty 20.9;
@ ST pagel -> page Rules: ST_Start -> ST_pagel{true}

ST_pagel => ST_page2{EV_Start}
ST_page2 => ST_page3{EV_Five}
@ ST_page3 -> page3 ST_page3 => ST_pagel{EV_Twenty}

@ ST_page2 -> page2

File: ControlledPresentationTimeExample.zip





EPUB/media/file284.png
& Set Media Raised Event Command o

Set Media Raised Event
Please specify the event to be raised for the supported media action types.

Statevent [ v Start Recording Event.
StopEvent | Stop Recording Event
PauseEvent Pause Recording Event

EndEvent v

o






EPUB/media/file241.png
& Project View [ Component Edit || Embedded HTML Explorer =8

&' [ComboBoxitem] (ID: cb1 item1)
&' [ComboBoxitem] Entry 01 (ID: cb1

z Set Basic Attributes L3
&' [ComboBoxitem] Entry 02 (ID: cb1

i
[

&' [ComboBoxtem] Entry 03 (D cb1 | "™

&' [ComboBoxitem] Entry 04 (ID: cb1 | HnkPase

&' [ComboBoxitem] Entry 05 (ID: cb1 i Link Raised Event

&' [ComboBoxitem] Entry 06 (ID: cb1 i Delete Combo Box ltem

&' [ComboBoxitem] Entry 07 (ID: ¢b1 | shou propertes View

&' [ComboBoxitem] Entry 08 (ID: cb1 i
&' [ComboBoxitem] Entry 09 (ID: cb1 item10)





EPUB/media/file156.png
& Live Validation

‘The requested action violates the integrity of the model.

Reason:
Grid Area component supports a single child only!

oK






EPUB/media/file563.png





EPUB/media/file113.png





EPUB/media/file377.png
@ *State Machine 2 | State Machine Rules S B e BERRE

[ Resource Set Property Value
v & platform:/resource/Projects/global.emfstatemachine Name 'S ST Start
~ 4 Machine VERSION_01_01 Page =
® ST Start Type = START
@ ST_Normal1 NORMAL
@ ST_Normal2 STAR
@ ST Normal3 END






EPUB/media/file11.png
& About CBA ItemBuilder o X

CBA ItemBuilder
Version: 9.7.0

A product of the DIPF | Leibniz Institute for Research
and Information in Education

ducation

< The CBA ItemBuilder is a new generation authoring
Z tool for building items in the context of computer
based assessments.

iz Institute for Research and

DIPF @

E
5 Copyright © 2008-2021 Nagarro GmbH

S

nstallton Detls






EPUB/media/file428.png
Hit/Miss Classes for Task Task01
 Configure the it/miss classes of task Tesk01

Add new class | Delete selected class

Class Name:  Score

COmMENE & mple varisble defined as class with the name “Score”] &
Assigned hits: Assigned misses:
(Jshow sssigned only Set Assignments






EPUB/media/file97.png





EPUB/media/file54.png
e

F: Booklet Design

Example for routing
within a test part:

Design:
Position
Booklet 1 2

1 Cl| .
2 c2| C3
3 Cl]| C3
4 | a
5 C3| .
6 a|a

TEST PART “F”

Set Variable |VBooklet = Random Integer between |1 |and |6

Prologue

If VBooklet == 1
Cluster “C1”

Cluster “C2”

Else if VBooklet ==
Cluster “C2”

Cluster “C3”

Else if VBooklet ==
Cluster “C1”

Main

Epilogue

TASK(S), e.g., Break

DA B Cluster “C1”

TASK(S), e.g., ltems
TASK(S), e.g., ltems

Cluster “C2”

TASK(S), e.g., ltems
TASK(S), e.g., ltems

DA B Cluster “C3”

TASK(S), e.g., ltems
TASK(S), e.g., ltems

Definition:






EPUB/media/file261.png





EPUB/media/file177.png
& Project Settings
Project Settings

i Some values cannot be changed since there se editors open currently. Close sllopen ecitors bfore opening this dislog o ensble all controls.

{Project Setfings | Transiations _Icons

Presentation height ) Presentation vidth
Link color ] Visited link color
Highight color —

Show edit contect menu u} Show browser context menu
Deactvate Firfox context menu u} Right-To-Left Orientation

Enable Page Size Warnings Support XLIFF Translation
Defautt langusge English (United States) | Defaultlanguage extension
Ctrl-F page <notused> .

<standard>

ok






EPUB/media/file207.png
Tab Index Example

Component Tab Index The Tab Index property can
i be used to specify the order in
which the input focus switches
Button 2 between your components
when Tab or Shift+Tab is
(J Checkbox ? pressed.

Components with a Tab
Index of -1 are not included

in the tab sequence.
File: TablndexExample.zip





EPUB/media/file255.png
& Tree node values

Tree node values
Define values for selected tree node which will be displayed in columns.

01.02.2023
25k

Addvalue
Editvalue
Remove value
Move up

Move down






EPUB/media/file290.png
Text-Link Example

Page A
This page contains links to page B:

Click here to link to "Page B" (Link 1).

Components of type "Link" can be formatted, for instance, centered, with border
and underlined text:

Click here to link to "Page B" (Link 2).

File: TextLinkEample.zip





EPUB/media/file212.png
2R

Simple Calculator

[T T ——|

i Add Note
File >
Edit >

Delete from Diagram
% Delete from Model

Format >
Set Auto Layout
Edit Text

Set Cursor

Set Target Input
) Show Properties View

Properties

& Input Source Configuration

Input Source Configuration Editor

Please specify the source element providing text to be displayed in our simple text field.

O No Input Source

O Input Field

O child Frame

® Calculation Engine Result

O Calculation Engine Stack

No Input Source
There is no input source specified. This will use the text
specified in the simple text field itself. Use this option to
deactivate input source settings done earlier.

Input Field

This uses an input field to provide the text to be
displayed. You cannot configure this option here. Use
the commands 'Set Input Source' and ‘Set Input Target'
to specify an input field as text provider.

Child Frame

This will use a child frame to provide text. Select the
frame attribute that will provide the text to be displayed.
UNDEFINED

Calculation Engine Result

This will use the calculation engine's result as text to be
displayed.

Calculation Engine Stack

This will use the calculation engines operator stack as
text to be displayed.

OK

Cancel






EPUB/media/file69.png
& CBA htem Buider - project name & CBA htem Buider - project name
File Edit Project Jemplates

es Help File Edit Project Templates

lities Help.

CoeEMH0@eh dzEe Do 26RO @R dIzEe®
0 “Project View B Component it = Embedded HTML Explorer| & Renderer 0 “Project View B Component it = Embedded HTML Explorer| &5 Renderer
v & project name = v & project name
[ page [simple,standardPage] Layout Preview ] page [simple,standardPage]
Add new page Open page
Preview project Savepage
Rename project Save page atemplate

Global properties.

Export page
Browse Taskand e Score Preview page
Browse vlue maps Page Settings

elN N @U@

<]
&
=]
@
@
(]

Edit State Machine. R

Browse variables






EPUB/media/file349.png
& CBA Item Builder - m] X
File Edit Project Templates Utilities Help

ColeE2N0@sh 3zEe Quick Access
@ Project View\IComponem Edit| = Embedded HTML Explorer| & Renderer, ~ B || = B ||HValue Maps ==
+ 8 SimpleValueDisplayExampleTrafficLight Vol Wpprs )
=) page [simple, standardPage] This upper table lists all available value maps. The table below
& dialog [simple, standardPage] shows the details of the value map that is currently selected
here.
Name
M_Example

Add |Edit Delete| Up Down

Value Map Details

This table shows the details of the value map that is currently
selected in the value maps table above.

Guard Text Image Audio Video

K Red 1.fw.png red.mp4

2 Red-Yel.. 2.fw.png original.ogv
3 Green  3.fwpng green.mp4

4 Yelow | Afwprg e

Add |Edit Delete| Up Down






EPUB/media/file128.png
Thank You

You have reached the end of this short assessment.

Click "Finish" to end the test.






EPUB/media/file60.png
lllustrate Replay Feature (Demo)

This item
demonstrates
the experimental
replay feature.

File: lllustrateReplayFeatureDemo.zip






EPUB/media/file299.png
& LinkImage
Extended image settings
Please select the display mode and the images to use.

O Standard button @fimagE Biton

Activated image: | ButtonC Activatedpng

Deactivated image: | ButtonC_Dectivated.png

Pressedimage: | ButtonC_Pressed.png

Mouse over image: | ButtonC_Mouseoverpng

oK






EPUB/media/file256.png
Image Map Example

ImageMap (Multiple ImageMap (Multiple
Select Mode: false) Select Mode: true)
u
Wrench unselected l

Tongs unselected
Screw unselected

Hammer unselected
Screwdriver unselected
, Drill unselected
e Saw unselected U
Selected: (Nothing selected) Spatula unselected

0 Tools selected
File: ImageMapExample.zip





EPUB/media/file557.png





EPUB/media/file213.png
Input Source Examples

Calculation Engine \
Input Field \

Child Frame \

File: InputSourceExamples.zip





EPUB/media/file81.png
& CBAItem Buider - roject_name - o x

File Edt Diogrom Broject Templates Utiities Help

D eE R @veIzEe s

B[ Gk A

~ =0

@ pagel.chaml diagram 33 | = O |3 “properties 5 |

e — 4|| B3 Panet

Core Property Value
1 i 7 v Appearance
—_— Background Color
 Component Interaction
Raised Event
v Display
Border Color
Border Width
Is Transparent
v Display Images
Image Reference
~ Identification
User Defined Id
v Misc
Drop Target
Is Frozen
Multiple Select Mode.
No Deselect
Selectable
v Position
Height
Width

|






EPUB/media/file140.png
& Newpage

Create a new page.
Please specify 2 name for the page. Click the Show Advanced.
options.

Page Name: [ page3

Hide Advanced,, || Advanced Settings
simple <

Page Type:
Tags:

Cenaaidbigd
e

Create as dialog? no

 Create Frame (and Panel)

oK

Cancel






EPUB/media/file183.png
& CBA Item Builder
Disgram Prject TemplatesUtiies Help
- _

| Reosaloatinorsae  catey

= Cut CtrleX
Copy CtrleC

Paste Ctrlav

% Delete Delete






EPUB/media/file441.png
PageArea Scoring Example

This item illustrates how the same content can be inserted two times on a single
page into two different PageAreas (PA1 and PA2) and how the components (i.e.,
the RadioButtons rba, rbB, rbC and rbD) included in the PageArea can be used

to create two different outcome variables (ScorePAl and ScorePA2).

Name
PA1_A
PA1_B
PA1_C
PA1_D
PA1_Missing
PA2_A
PA2_B
PA2_C
PA2_D
PA2_Missing

O O0O0OO0

Option A
Option B
Option C

Option D

Class

ScorePA1
ScorePA1
ScorePA1
ScorePA1
ScorePA1
ScorePA2
ScorePA2
ScorePA2
ScorePA2
ScorePA2

File: PageAreaScoringExample.zip

Syntax

PAl.r
PAl.r
PAl.r
PAl.r
true

PA2.r
PA2.r

PA2.r

PA2.r

true

bA

bB

bC

bD

bA

bB

bD

O O0O0OO0

Option A
Option B
Option C

Option D





EPUB/media/file298.png
& LinkImage

Extended image settings
Please select the display mode and the images to use.

®Siandrd bor]

ButtonB.png

Olmage button
Actvated image:
Deactvated image:
Pressed image:

Mouse over image:






EPUB/media/file484.png
Example using an ExternalPageFrame and window.SpeechRecognition (Chrome)/
window.webkitSpeechRecognition (Safari)

Beispiel 1

Beispiel 2

Example 3

Example 4

Exemple 5

Example 6

Stop Example

This example works only in Chrome Desktop. Status: Not Listening Index: 99999 Skip current word

Attempts: -1 0





EPUB/media/file249.png
Advanced Components
;o Collect Responses

Tree (with [Nodes])

----» Table

Tables ---

~A
TableCellEditor





EPUB/media/file435.png
Hit-Definition AND & OR Example

0000

Select some of the
Checkboxes and check
the scoring using the
"Scoring Debug
Window".

Notice warning (red text)
when multiple hits are
active at a time.

File: HitdefinitionAndANDOr.zip

(Click here to set the input
focus and press
Crtl + S to open the
"Scoring Debug Window".)

Hit Definitions:

* A_and_B: (A and B)
* A or B: (A or B)

® notB: not B

e all: (((A and B) and C) and D)

Sopring Debug Windsw

Score result:
Credit Class:
Credit Weight 0
Result text:

truz Execution Time: 20272 Total hits/Total Weight: i”n
Reaction Time: 5511 Total misses/Total Weight:  0/0
Nb. of Interactions: 6

Hits:
[t [Name  |WeightlGas  |Resuittex |
1

notd

Hits:
! AandB 1
! AorB 1





EPUB/media/file134.png





EPUB/media/file478.png
Simple Example Showing the use of an |

ExternalPageFrame

to Play Audio

With the three buttons below, you can create melodies. Please play one of the

different tones by pressing and holding one
Here you can play the three different tones:

File: ExternalPageFrameButtonExample.zip

of the buttons at a time!





EPUB/media/file541.png





EPUB/media/file206.png
& set Cursor

Set Test Run Time Cursor Image

Please select the type of image (standardized or specific resource) and the image to use as
cursor at test run time. The default option uses a default image per component type.

® Standardized image Cursor type:  help
O Spedific image Cursor image: MyCursor.png
O Default image

OK

Cancel






EPUB/media/file75.png





EPUB/media/file520.png
Use of CBA ItemBuilder Tasks (Task00)

“EH KX

r
& CBA Item Builder - UseOfTasksExamples - C:\work\github\CBAltemBuilderBook\ib\9_09\items\UseOfTasksExamples.zip

page_used_in_Task03 [simple, xPage/standardPage]
pagel_used_in_Task04 [simple, xPage/standardPage]
pagel_used_in_Task04 [simple, xPage/standardPage]
pagel_used_in_Task05 [simple, xPage/standardPage]
pagel_used_in_Task05 [simple, xPage/standardPage]
xpage_used_in_Task06 [simple, xPage/standardPage]
pagel_used_in_Task06 [simple, standardPage]
pagel_used_in_Task06 [simple, xPage/standardPage]
xpagel_used_in_Task07 [simple, xPage]
xpage2_used_in_Task07 [simple, xPage]
pagel_used_in_Task07 [simple, standardPage]
page2_used_in_Task07 [simple, standardPage]
pagel_used_in_Task08 [simple, xPage/standardPage]
page2_used_in_Task08 [simple, xPage/standardPage]
page3_used_in_Task08 [simple, xPage/standardPage]
page_used_in_Task09 [simple, standardPage]

= O X
File Edit Project Templates Utilities Help
OB EXO0@FNSm ¥ZzEe® R T Q
5 |3 Project View | 8 = O |[@ Tasks x | =1
v UseOfTasksExamples O
page_used_in_Task00 [simple, standardPage] (0 Use first active hit per class (applies to all tasks). () Use first active miss per class (applie | "
page_used_in_Task01 [simple, standardPage]
page_used_in_Task02 [simple, standardPage] New Delete Open Add Hit Add Miss  Edit Classes Prev |

MinHits

Start Page

Page._ _in_
page_used_in_Task02
page_used_in_Task03
pagel_used_in_Task04
pagel_used_in_Task05
pagel_used_in_Task06
pagel_used_in_Task07
pagel_used_in_Task08
page_used_in_Task09

1
1
1
1
1
1
1
1

COCOOCOOCOO

Hits
Misses

Start X-Page

xpage_used_in_Task06
xpagel_used_in_Task07

‘ Next (Task) ’






EPUB/media/file240.png
& Add Combo Box Item o X

Set the combo box item’s label, user defined ID and mouse over text.
Please specifiy the values to use for the component's attributes.

Tt feem

User Defined Id

Mouse Over Text






EPUB/media/file399.png
Audio Player Operators Example Volume (min: 1, max: 10): 5

ST _Running internal

Play I {EV_Audiostart|setMediaPlayer (mp,mp_start)}
I {EV_Audiopause|setMediaPlayer (mp, mp_pause) }
I {EV_Audiostop|setMediaPlayer (mp, mp_stop) }

{EV_IncreaseVolume|set (V_Volume,V Volume+l),
Increase setMediaPlayerVolume (mp,V_Volume) }

{EV_DecreaseVolume|set (V_Volume,V Volume-1),
Decrease setMediaPlayerVolume (mp,V_Volume) }

File: AudioPlayerOperatorsExample.zip





EPUB/media/file313.png
StartPiP2 T

St P1P2_T

art P1 P2






EPUB/media/file356.png
Drag each of the digits 1, 2, 6 and 7 into the boxes to make the following
multiplication problem correct.

Use each digit only once.

4,2 8 4

N O -

N AT Released drag-and-drop item administered to eighth-grade
students (G8 item) in the 2017 NAEP mathematics assessment.
Jiang, Y., Gong, T., Saldivia, L. E., Cayton-Hodges, G., & Agard, C. (2021). Using process data to understand problem-solving strategies and processes for
drag-and-drop items in a large-scale mathematics assessment. Large-Scale Assessments in Education, 9(1), 2. https://doi.org/10.1186/s40536-021-00095-4





EPUB/media/file283.png
Audio Video Properties Video |

Hide Controls Max Play

false 0

» 0:00/0:00 : Play
true 0

Play
false 2

» 0:00/0:00 : Play
true 2

Play

File: AudioVideoProperties.zip I Set Frozen I





EPUB/media/file155.png
~ [ 1Panell 0,0 -

3 [Button] (690,390) B

4 [GridArea]

v 4 [GridArea]
< HTML

4 [Gridarea]
4 [GridArea]
4 [GridArea]

(974.150) ol |

& Bad Configuration

| The panel already contains elements of afxed layout.

-






EPUB/media/file47.png
Exit Dialog

Do you really want to navigate to the next unit (Unit
2)7? It is impossible to navigate back to the Unit 1.






EPUB/media/file198.png
& Invalid User Defined Id X

o The supplied ‘User Defined Idalready exists: b_2.2 s the ID of some RadioButton widget.

T





EPUB/media/file149.png
& CBAltem Builder
File Edt Diogrom Broject Templates Utiities Help

DSE N0 @RMIZEe
Segoe Ul NI RS R At

8 “Project View B Component it 1 Embedded HTML Exploer| £ Renderer
~ [ [Frame] 00)
) teane o0 1 Configine Sl v 1
Set Cursor
Show Properties View






EPUB/media/file106.png





EPUB/media/file535.png





EPUB/media/file277.png
& CBA Item Builder - ImageRessourcesBxample - .. — )
File Edit Project Templotes Utiities Help
ColeE2N0@gh IzEe

5 [ Resouce Browser X

@ Preview image resources (] Preview non-image resources

B[ avaiable resources Resource Preview
5 || Background 640x300ng
bmp.bmp
gitgit
I8

B —

Add | Delete  Cleanup





EPUB/media/file407.png
Timed Event Example

erss: [N o s Change State (E_ChangeState) I
E T2 10: [ . 0 ticks Current State is: ST_A

Explanation of Processing of Events in State ST_A

In all three states (ST_A, ST_B and ST_C) the events are defined identically because the state
machine syntax defines the events above transition rules. However, processing of the events
E_T1 and E_T2 differs between states.

In ST_A, the events are processed with Self-Transitions:

ST A => ST A {E T1|/*...*/} e
File: TimedEventExample.zip





EPUB/media/file234.png
& CBA Item Builder - project name
File Edit Diagram Project Templates Utilities Help
ColeEEE0@eh dzEe

Seqoe U vig V(B rlav ey gy~ BB Ry k| B v 150%
@ *Project View| 7 = O |8 Component Edit| =B \‘a page1.cbaml_diagram
~ & project name  E [irmmie] {0,0) | Lo : 100 : 200 :
ElpaceilEmpleletndaaroe D[Panel] (0,0) | Configure Select Groups |
it s

Show Properties View -
Delete from Model






EPUB/media/file358.png
Free Drag and Drop Example
using MapBasedVariableDisplays (ImageValueDisplays)

Within a Panel with: Drop Target = false Drop Target = false

E}@

ol
ol .

e

File: FreeDragAndDrop.zip





EPUB/media/file455.png
|mage Resize Difference Resize differences (uper bar shows the results of resizing within
the browser and lower bar is resize in Adobe Fireworks).

Original (1000 x 100 Pixel))

File: ImageResizeBrowserExample.zip





EPUB/media/file269.png





EPUB/media/file43.png
Simple C-Test Example Start

If you were to ask most people who Charles Darwin was,
many of them would reply that he was the man who said
that we were descended from monkeys. They wo be
wr . Darwin d no mo, _ than sug the

pOsSsi . What h said, a proved b | thousands

o/ examples, w that ov millions o years
ani and pla have cha . This he called evolution.

Baghaei, P., & Tabatabaee, M. (2015). The C-Test: An Integrative Measure of Crystallized Intelligence. Journal
of Intelligence, 3(2), 46-58. https://doi.org/10.3390/jintelligence3020046 I

File: SimpleCTestExample.zip





EPUB/media/file463.png





EPUB/media/file544.png





EPUB/media/file439.png
Free Drag and Drop Scoring Example (R S R

focus and press
Crtl + S to open the

Free Drag & DI'Op can be Hit-Definitions "Scoring Debug Window".)
scored using the Operator
panel position range(). ® Dice2Solved:

panel position range (PanalContainerID,
Move all dice to false, 5,175,110,255,true,I 1)
the green area! ¢ Dice3Solved:

panel position range (PanalContainerID,

false, 5,175,110,255,true,I 2)
® Dice4Solved:
m ' panel position range (PanalContainerID,
false, 5,175,110,255,true,I_3)
m m ® Diceb5Solved:

panel position range (PanalContainerID,
false, 5,175,110,255,true,I 4)

e AllDicesSolved:
(((panel position range (PanalContainerID,
false, 5,175,110,255,true,I 1) and
panel position range (PanalContainerID,
false, 5,175,110,255,true,I 2)) and
panel position range (PanalContainerID,
false, 5,175,110,255,true,I 3))
and
panel position range (PanalContainerID,
false, 5,175,110,255,true,I 4))

® OnlyDice2Solved:
panel position range (PanalContainerID,
erue, 5,175,110,255,true, I_ 1)

File: FreeDragAndDropScoring.zip





EPUB/media/file560.png





EPUB/media/file374.png





EPUB/media/file188.png





EPUB/media/file110.png





EPUB/media/file536.png





EPUB/media/file447.png
Scoring Input Field Example

Enter correct or wrong text responses and check the
"Scoring Debug Window". See table "Hits" for matched
scoring conditions.

Item 1: Text entry (correct = Dog")

Hit Definition for Class "Var1":
e Variable1_Correct: matches (txtVarl, "\\s?[d|D]og\\s2")
e Variable1_Wrong: (not matches (txtVarl,"\\s?[d|D]og\\s?") and not
matches (txtvarl,""))
e Variable1_Missing: matches (txtVarl,"")

Item 2: Number entry (correct = "3.5")

Hit Definition for Class "Var2":
e Variable2_ Correct: matches (txtVar2,"\\s2?3[.|,]15\\s2")
e Variable2_Wrong: (not matches (txtVar2,"\\s?3[.|,15\\s?") and not
matches (txtvar2,""))
e Variable2_Missing: matches (txtVar2,"")

Item 3: Number entry (correct between "2.5 and 7.3")

Hit Definition for Class "Var3":
e Variable3_Correct: ( (matches (txtVar3,"\\s?[2]1[.],]1[5-9]\\s2") or
matches (txtVar3, "\\s?[3-6][.],1[0-9]\\s?")) or matches (txtVar3, "\\s?
[710.1,100-331\\s?"))

e Variable3_Wrong: (not ((matches (txtVar3,"\\s?[2][.]|,]1[5-9]1\\s2") or
matches (txtVar3, "\\s?[3-6][.],1[0-9]\\s?")) or matches (txtVar3, "\\s?
[71[-1,1[0-33]1\\s2")) and not matches (txtVar3,""))

e Variable3_Missing: matches (txtVar3,"")

File: ScoringlnputFieldExample.zip





EPUB/media/file471.png
Components as Labels for RadioButtons (using Conditional Links)

A (Default): Distractor
text is defined as the
property text of each
component of type
RadioButton.

O Option A

O Option B

O Option C

O Option D

B (Wrong): Distractor text is  C (Alternative): Labels are linked

defined using additional
components (e.g.,
SingleLinelnputField) but
not linked to RadioButtons.

O O OO

Option A
Option B
Option C
Option D

to the current page with a
Conditional Link that contains
setActive ()-operators to
select the RadioButtons.
Option A

Option B

Option C

Option D

O O OO

File: ComponentsAsLabelsForRadioButtonsConditionalLinksExample.zip





EPUB/media/file285.png
Audio Recording Example

Instructions: First, press "Start Recording” to make an audio recording. Then, speak into the

microphone and press "End Recording” at the end. After a recording, it is possible to listen to the
recording again.

Start Recording I

Notes:

® The audio recording will only work if access to the microphone is granted.
® Due to a bug in CBA ltemBuilder 10.0, the recording is played twice after recording.

File: AudioRecordingExample.zip





EPUB/media/file35.png
The following example illustrates the decomposition of response times in item-
batteries (e.g., Likert scales) using log data following the procedure of Kroehne and
Goldhammer (2018) as implemented in the R package LogFSM.

The following log events are used in this minimal example:

® T0ADED: The questionnaire page was loaded
® ANSWERCHANGE: A question was answered
® UNLOADED: The questionnaire page was left

The highlighted yellow area on the right illustrates how the collected log events can
be used to distinguish the following two types of states using a finite-state machine:

e StemQ;: Reading the questionnaire stem and answering the first question i.
® Q: Answering a question j (j # /).

The Average Answering Time (AAT), calculated as the average of the times in the
visited states Q; can be used to derive an indicator for Rapid Responding.

Rapid Responding (RR) is understood as a particular form of Careless Responding
and Insufficient Effort Responding (C/IER).






EPUB/media/file293.png
& Configure o Multiine Text o

Configure a Multiline Text
Enter the text for the component's text attribute.

Text | [Click here to link to "Page B" (Link 1)

Save Cancel






EPUB/media/file196.png
& CBA Item Bui

- myproject
File Edt Diogrom Broject Templotes Utiities Help

Colebamea@g dzEe

{segoe Ul VoM B 7| A-m - Lo B BB B -|/50% | @0 [uick Access]
(& Project View | {8 Component Edit| = O || @ paget.chaml diagram 2 | =8 |,
~ ] (Frame] (D: $1345898110804000) s

~ [ tPanel] (ID: $1345898110930500) TextField s

4 [HTMUTectField] (I: $1345898110940000) =

~ [ [Panel] (1D: $1345898110975700) =

4 [GridArea] (D: $1345898110980300)
v 4 [GridArea] (ID: $1345898110982800)
3 [Button] (ID: $1346095790502600) i

4 [GridArea] (ID: $1345898110985000)
4 [GridArea] (ID: $1345898110987300)






EPUB/media/file382.png
State Transition Example
Page: pageA
Current State: ST_A

ST A => ST A{EV Previous|openDialog(dialogBegin, 240, 20)}
ST A => ST B{EV Next|setEmbeddedPage (PA, pageB) }

Previous | Next | v 4 Machine VERSION_01_01
(EV_Previous) (EV_Next) ® ST Start
@STA

@STB
File: StateTransitionExample.zip @ ST C





EPUB/media/file19.png
& Informational message X

The Audio component with user defined 1D myAudioUserDefinedid is configured to start
playing automatically. Consider activating the login dialog for the preview to make sure the
automatic start feature works properly.





EPUB/media/file390.png
Insert Text Example

Example Conditional Link  Finite-State Machine
SingleLineTInputField + | = * + | = *
| % : | %
$] €] @ $ €] @
‘o) @ ‘jo) @
TnputField + | * s [ *
| % : | %
$] €] @ $ €] @
File: InsertTextExample.zip o & o ®






EPUB/media/file262.png





EPUB/media/file98.png
& New Project

© Onlyletters, digits, underscores and hyphens se slowed (templtes'is

reserved name).

Project Name: 8

o white spacd

oK






EPUB/media/file157.png
Example for Using PageAreas of Different Size (with Scrolling)

PageArea "area1" showing
the page "p_area1":

PageArea "area2" showing
the page "p_area2":

PageArea "area3" showing
the page "p_area3":

top, left

top, left

top, left

File: PageAreaExample.zip






EPUB/media/file181.png





EPUB/media/file432.png
ResultText-Operator Example

Question 1:
(only numbers)

Question 2:
(multiline text)

Question3: (O a

(optional text)
optional texi O B
O Other

Name Class
Q1_Number Var1
Q2_Text Var2
Q2_Missing Var2
Q3 A Var3
Q3_B Var3

Q3_OtherNotSpecified  |Var3

Q3_Other Var3
Q3_Missing Var3
Q3_EmptyText Vard

Q3_Other_not_selected |Var4
Q3_Other_selected Var4d

File: ResultTextOperatorExample.zip

This example illustrates the use of the
result text ()-operator for numeric
inputs, (multiline) text responses and
optional text responses.

Syntax

result text (inputl)

(not matches (input2,"") and result text (input2))
(matches (input2,"") and result text ("Missing"))

(A and result text ("A"))

(B and result text ("B"))

((Other and matches (input3,"")) and
result text ("Other: Not Specified"))
((Other and not matches (input3,"")) and
result text ("Other: %7 8sY, coulldld

(((not A and not B) and not Other) and
result text ("Missing"))

matches (input3,"")

((not Other and result text (input3)) and not
matches (input3,""))

((Other and result text (input3)) and not
matches (input3,""))





EPUB/media/file238.png
Item lllustrating ComboBoxes and Lists

ComboBox

ComboBox

Visible Item Count: 0O
Visible Item Count: 3

Visible Item Count: 5

Note: Combobox with
Images are not supportet
in CBA ItemBuilder 9.8.

File: ComboboxAndListExample.zip

ListX

List Item 01
List Item 02
List Item 03

L it I e NA
Multiple Select
Modus: true
Note: Hold the Ctrl/Strg
key to select multiple

items.

v

@® UnFrozen

ListX

List Item 01
List Item 02
List Item 03

Licd L en NA
Multiple Select
Modus: false
Note: Multiple Select Mode
"false" is not supported in CBA
ItemBuilder 9.8.

v

O Frozen





EPUB/media/file335.png
Show Hint State Example

Sort the numbers by value. Start with the smallest amount.

2/3

1/5

0,3

File: ShowHintStateExample zip State is "State Hint Visible'. | Recet





EPUB/media/file397.png
Scroll-Operator Example Show scrollTopLevelPage()-Example

PageArea "PA1" hosting a Page PageArea "PA2" hosting a Page
(Height: 1200px, Width: 100px) (Height: 1200px, Width: 1200px)
0,0 Scroll 0,0 0,0 Scroll 0,0
Scroll 0,400 Scroll 400,400
Scroll 0,50% Scroll 600,600
0,100 100,100

v

« | Scroll 0,1200 » Scroll 100%,100%

File: ScrollOperatorExample.zip





EPUB/media/file319.png
£} Home http:/example.de/Home End Task

Home

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor
invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam
et justo duo dolores et ea rebum (page 1). Stet clita kasd gubergren, no sea takimata sanctus
est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed
diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam
voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren,
no sea takimata sanctus est Lorem ipsum dolor sit amet (page 2).

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor
invidunt ut labore et dolore magna aliquyam?

File: SimpleWebBrowserExample.zip Home | Impessum | Sitemap






EPUB/media/file230.png
Item lllustrating InputField and SingleLinelnputField

SingleLinelnputField InputField
White background and gray
box (Border Width: 2)
SetFrozen!
Readonly: true and Example text

Aligrments RIGI Example text in multiple lines

Frozen: true and
Alignment: CENTER

Example text

Border Width: 0 and | . SN
Example text in multiple lines

Transparent: true

File: InputFieldAndSingleLinelnputFieldExample.zip





EPUB/media/file102.png
& CBAltem Builder
File Edt Project Templotes

(0B 2

@r|Ec

B E]

7—+

& Preferences

type filtertext

CBA Item Builder XLIFF
CBA Item Fonts

CBA Presentation Size
CBA Preview

CBA Rulers And Grid

CBA Presentation Size

Width: [ 1024

i






EPUB/media/file494.png
& Preferences o

type filter text CBA Item Fonts -
CBA Item Builder XLIF
CBA item Fonts Font Name
CBA Item Size. Bell MT
CBA Preview Berlin Sans 8
CBA Rulers And Grid | | Berlin Sans F8 Demi
Bemard MT Condensed
Bireh st
Blackadder ITC
Blackoak Std
Bodoni MT
Bodoni MT Black
Bodoni MT Condensed
Bodoni MT Poster Compressed
Book Antiqua

2

Import Font Selection
Export Font Selection
Select All

Deselect All

PR N






EPUB/media/file366.png
Advanced Conditional Link Example

Condtional Link 1

Condtional Link 2

SLIF1

SLIF2

File: AdvancedConditionalLinkExample.zip

{Targetl:
{Target2:

{Targetl:
{Target2:

matches (SLIF1,"1")}

true}

matches (SLIF2,"1") }
not matches (SLIF2,"")}





EPUB/media/file90.png





EPUB/media/file82.png
B





EPUB/media/file408.png
Navigation with States

we & Blmehine
Page: First @ Start
State: ST_First

@ ST_First -> First
@ ST_Second -> Second

Events: EV_GoToFirst, EV_GoToSecond;
Rules:

Start -> ST_First{true}
ST First

v & NavigateWithStatesExample
=> ST Second{EV_GoToSecond} (=] First [simple]
ST Second => ST First{EV GoToFirst} [=] Second [simple]

EV_GoToSecond (Back to Page 'Second’) >>

File: NavigateWithStatesExample.zip





EPUB/media/file222.png





EPUB/media/file74.png





EPUB/media/file214.png
The text you type into the

falloine Trreae Wi Al A wiill ha

l
|
SimpleTextF

EEE

InputSourceExamg

_ % Add Note

File

Edit
% Delete from Diagram
% Delete from Model

Format

Set Auto Layout
Edit Text

Link Raised Out Event
Link Raised In Event

Set Cursor

1 Show Properties View

Properties

SimpleTextField with

T PN _T IR BN

1 Add Note
File

InputSourceExamples. &t

% Delete from Diagram
% Delete from Model

Format

Set Auto Layout
Edit Text

Set Cursor

Configure Input Source

1 Show Properties View

Properties






EPUB/media/file303.png





EPUB/media/file389.png
Set Focus Examples

Example

SingleLineInputField

InputField

File: SetFocusExamples.zip

Conditional Link

Focus()

Finite-State Machine

Focus()

Focus()

Focus()






EPUB/media/file109.png
‘Appearance





EPUB/media/file398.png
Audio Playback Restriction Examples

Simple (Hide Controls: false andMax Play: 3)

» 0:00/0:00

Advance (using variable to count the number of playbacks)

Play I The audio file was already played 0 times.

File: AudioPlaybackRestrictionExamples.zip





EPUB/media/file254.png
v [ [Tree] (ID: MyTree01)
i [Types]
& [TreeNodeType] Typea (
&+ [TreeNodeType] TypeB (
I Thodes]
. [Treeliode] N1 (ID: NodeN1)
£ [TreeNode] N11 (ID: NodeN11)
& [TreeNode] N12 (ID: NodeN12)
7 [TreeNlode] N2 (ID: Nodeti2)
I [Treeliode] N3 (ID: NodeN3)
& [TreeNode] N31 (ID: NodeN31)
v [Columns]
‘&< [TreeColumn] Name (ID: TreeColumnliame)
¢ [TreeColumn] Last Change (ID: TreeCokumnlas:
&< [TreeColumn] size (ID: TreeColumnize)
2] [TreeView] (ID: TV)
£ [TreeChidArea] (

'CA)

LinkPge
Set Basc Attibutes
SetNode Type

Delete Tree Node

Set Column Values
Add Tee Node

Show Properties View





EPUB/media/file487.png
External Page Frame with QTI.JS

A. BILDE AUS DEN VERBFORMEN DIE DAZUGEHORIGEN PASSIVF

Candidate:

A. Bilde aus den Verbformen die dazugehéorigen
Passivformen. Beachte die Zeitform.

Beispiel:
the car - to produce (Simple Present)
the car is produced

File: ExternalPageFrameWithQtiJS.zip





EPUB/media/file440.png
Raised Event Scoring Example

lllustration of the operators raised events () and
raised all events() .

Use the following buttons to trigger the assigned events and press Strg+S / Cntr+S
to check the scoring using the "Scoring Debug Window":

Trigger EV ButtonA Event "EV_ButtonA" was triggered 0 times.

Trigger EV ButtonB Event "EV_ButtonB" was triggered 0 times.

Trigger EV ButtonC Event "EV_ButtonC" was triggered 0 times.

) Event "EV_ButtonD" was triggered 0 times.
Trigger EV_ButtonD

Hit Definitions ("Use first active hit per class" activated):

Hit_user_interactions_below5: [raised events ()<5]

e Hit raised_event_equals_zero: [raised events ()==0]

o Hit raised_eventsAandB below2: [raised nb events (EV ButtonA,
EV_ButtonB)<2] - B

o Hit raised all events: raised all events (EV ButtonA,
EV_ButtonB, EV_ButtonC, EV_ButtonD)

® Hit_nothing_else: true

File: RaisedEventScoringExample.zip





EPUB/media/file165.png
(2 Tasks 2|

| Tasks

Name. Minkits Start Page. Start X-Page Scoring Scored Task

New ] [DsRteTT] [Topen ] [TrAGare ] [Adaviee | (e [P ] [ Layout

~ Hits

[osse [ open ] %]

~ Misses

[osse [ open ] %]






EPUB/media/file126.png





EPUB/media/file173.png





EPUB/media/file148.png
& Configure Select Groups

Configure Select Groups
Configure the Select Groups of the Frame

Namber  Selectable  MulipleSelect  NoDeselect _ Desciption
0 Y - - Gowh
I v v FA Y

Add| [ Delete| [Up| |Down






EPUB/media/file118.png
Single-Choice Task

Select the option that answers the following question:

Which answer is correct?

() Option A

() Option B
() Option C*

() Option D





EPUB/media/file479.png
Math Live ExternalPageFrame-Example

Example of a task for which a formula needs to be entered (e.g., the reduce the fraction
with the numerator 125 and the denominator 5):

Response as FSM Variable of type String: (empty)

Evaluated response (using https://cortexjs.io/): (empty)

This space is used by the on-screen keyboard and should not be used for displaying task content.
Next
File: MathLiveExternalPageFrameExample.zip





EPUB/media/file350.png
& Set value map detail entry attributes

Value Map Detail

Please specifiy the values to use for the value map detail entry.

Guard [ 1

Text | Red

Image | 1.fw.png Browse
Audio Browse
Video | red.mp4 Browse

OK Cancel






EPUB/media/file229.png
Text
Responses’

HTMLTextField
and Button





EPUB/media/file320.png
T

/ Components-—+ -
, for Buttons -

“Components-
for Layout






EPUB/media/file246.png





EPUB/media/file89.png
& CBA Item Builder - project name
File Edit Diagram Project Templates Utiities Help

AsgElEs =l - Eee A g =
BEE s /A H- s @B EMIEED Jl@ (Quick Access
& | @ “paget.cbaml_diagram 37 | = O || D “properties 52 | olElx@E v =8
@ o - e @ e a0 e % Shage
CIN | ———
= . RulersGrid_ Dislay Messurement
= PITRAE Texd Field DIShowRaler g s [picls
[ show Grid
3 [ Grid In Front. Grid Spacing | 10
Grid Line [ snap To Grid
- Color | [Asnap To Shapes
Style [Dashot v |Retore Defouts
g
&
§
Button






EPUB/media/file141.png
& CBA Item Buider - SinglePageitems MosterProject
Fle Edt Project Templstes Uiitis Help

BE@sedzEe L

[Quick Access|

= Template Browser £ |

Eco.. |[LEm.| = O
SinglePagetems MasterProject || 9" °|
(=] pagedt [simple] Skip Preview: [
Available templates

Import template ... | Delete template
Export template...

Create page | | Cancel

Headline






EPUB/media/file327.png
& Embedded HTML Explorer

9 Please select only HTML, HTM, JS or CSS files!





EPUB/media/file189.png





EPUB/media/file52.png
4 C: Multiple Blocks

D: Multiple Test Parts

TEST PART “C”

Prologue TASK(S), e.g., Instruction

. X
Main o
C
=
>
Epilogue
1 TASK(S), e.g., Break §,
>
=}
'
Prologue L
TASK(S), e.g., Transition -
o
Main o
Epilogue
TASK(S), e.g., Farewell

TEST PART “D-1” TEST PART “D-2”

Prologue F7asK(s), e.g., Instruction Prologue I TASK(S), e.g., Transition

Main Main

Epilogue Epilogue
1 1 TASK(S), e.g., Farewell

Prologue

TASK(S), e.g., Transition

Main
Epilogue =

TASK(S), e.g., Break

Routing between Test Parts






EPUB/media/file200.png
& CoA e Buider - Scalise2006afigurel2

File Edit Project Templates Utilities Help

S @ Preview project

. [ New page from template
import page

Import external content

Import XUFF

Verify text translation

Finalize wransiation

& Scali
& e

Editalltext blocks
text fields

NN <\e @

Update rch text displays
Browse resources
Browse Tasks

Browse Value Maps.

Edit State Machine

it State Chart

SONN® N





EPUB/media/file18.png
& Preferences

type filter text
CBA Item Builder XLIFF
CBA Item Fonts
(CBA Presentation Size
(CBA Preview
CBA Rulers And Grid

CBA Preview

Browser to use for preview:
© System Default Browser

O Use Installed Chrome (might require installation)
O Portable Browser (shipped with CBA ltemBuilder)

Automatic save settings:
O Always

O Ask before saving
© Never

Hot key to open scoring debug window:

Bcul

(O shift

Key s |

8 Debug window is available

Hot key to open trace debug window:

Bcul
(O shift

Key y

8 Debug window is available

Hot key to open state machine debug window:

Bcul
(O shift

Key m
8 Debug window is available

Restore Defaults Apply

Apply and Close Cancel





EPUB/media/file438.png
Scoring using variable in ()-operator with
multiple values

Scoring using the variable in ()-operator with muliple values:

Value of Variable Hit-Definitions "Var1"

"V_FSMvVariable":
o Hit CurrentValue2or3:

variable in(V_FSMvariable, 2, 3)
o Hit CurrentValue4or5:
(variable in (V FSMVariable, 4) or
O Variable_In (V_FSMVariable, 5))
e Hit DefaultVar1 and Hit_DefaultHitVar2: true

Hit-Definitions "Var2"

e Hit_ValueAnyTime6or8:
visited all values of variable (
V_FSMvariable, 6, 8)

e Hit DefaultVar1 and Hit_DefaultHitVar2: true

Notes:

® Use Ctrl / Strg + S to open the "Scoring Debug Window", which shows the active hits according to

the hit definition shown above.
® Use Ctrl / Strg + M to open the "State Machine Debug Window", which shows the values of the

defined FSM-variables as well as the raised event names.
® The item uses the option "Use first active hit per class".

File: VariableSetsScoring.zip





EPUB/media/file464.png





EPUB/media/file44.png
Digits Symbol Substitution Test Example
There are 30 seconds for this

Use drag-and-drop to match 1 2 3 4|5 6 part of the test (time adjusted
the symbols to numbers. RN ¢ = |||[y [ 20 ® JE for demonstration purposes).

~
©
©

File: DigitsSymbolSubstitutionTestExample.zip





EPUB/media/file103.png
& CBA Item Builder - existing_project
File Edit Project Templates

ities Help.

& Project Settings

0026 @20 E e ¥ mE Project Settings

(& “Project View | [ Component Ect| I Embedded H

v B eisting_project
(=) pagel [simp

& Layout Preview
[C Add new page
@ Preview project
(% Rename project

(4 Browse Task and tem Scor
] Browse value maps
@  Edit State Machine

Please edit the global project settings.
(To make an icon available here you have to include it into your project via the Resource Browser first)

Project Settings | Translations  Icons

Presentation height

Link color

Highlight color

Show edit context menu
Deactivate Firefox context ment
Enable Page Size Wamnings

Trace Variable Changes

Default language

Ctrl-F page

CSS Styles

300
|
3

English (United States)

<notused> v

Presentation width

Visited link color

Show browser context menu
Right-To-Left Orientation

Support XLIFF Translation

Default language extension

<standard>

OK

Cancel






EPUB/media/file391.png
Set Active Examples

Example Conditional Link Finite-State Machine

Butiten (Ueggle) myButton1 ’ setActive || unsetActive setActive unsetActive
’ scAcive dnselAcive selAclive dnselAcive

OheelEes (J myCheckBox1 setActive unsetActive setActive unsetActive

scAcive dnselAcive selAclive dnselAcive

RadioButton () myRadioButtont setActive || unsetActive setActive unsetActive
scAcive dnselAcive selAclive dnselAcive

File: SetActiveExample.zip






EPUB/media/file448.png
matches () -Operator for Multiline InputFields

Enter a multiline text and exit the text field (Focus). After that the two operators
matches (UserDefinedID,"") and matches (UserDefinedID, "~ (2!\\s*$) .+") are updated:

Check 1: matches (UserDefinedID, "~ (2 !\\s*$) .+")
Blank or empty only
Check 2: matches (UserDefinedID,"")
No text or at least one empty line

The operator matches (UserDefinedID,"") hits as soon as
an empty line is included.

File: MatchesMultiLineTest.zip





EPUB/media/file28.png
& Edit Text Occurrence

Edita Text
Select the text occurrence to edit and hit the Edit button.

Veexit Navi

Bt

Text UserID.

S werden nach Beend... . Exit ModaiDiaiog, himi
Unit beenden. Exit_ModalDialog_Butto.
V_ExitFeedback Exit_ModalDialog_Maf

Zurtck zur Unit, Exit_ModalDialog_Butto...

Component
FiMLTectField

Button
MapBasedvariableDisplay
Button
MapBasedvariableDisplay

Edit | C]Show empty fieds






EPUB/media/file359.png
Drag and Drop Modes

DROP_SWITCH DROP_MOVE DROP_COPY
In this item the three modes for
drag and drop are illustrated:
Variable: V_A1 V_A2 V_A3 V_A4
MapBasedVariableDisplay: A B c D
Value: 1 2 3 4

File: DragAndDropModes.zip






EPUB/media/file381.png
Start Rule Examples (page?)

Current Task: ~ TaskO01

Current State:  ST_A

NEXT_TASK
(Navigate to the previous task)

File: StartRuleExamples.zip





EPUB/media/file195.png
& CBA Item Builder - demo
File Edit Diagram Project Templates Utiities Help

6 DH0 AL IZEe

o X
Q

& | @ “paget.cbaml_diagram | = 0 |[[5 clipboard x | =5
@ q[|| " Graphical elements available for the Edit-Paste operation
= (0 Cleanup project references from pasted components
2 B
- | Deleteselection
&

Clipboard content - Panel

-

HTMLTextField on a Panel

Component of type [Panel] can be pasted into the following containers:
- Frame

- WebChildFrame

- Panel

- GridArea






EPUB/media/file537.png





EPUB/media/file470.png
Video with Built In Questions

File: VideoWwithBuiltinQuestions.zip

Start






EPUB/media/file237.png
Example for Single and Mulitple Choice using Select Groups

Radiobutton

(Default is
Group 3/
Pattern D)

Checkbox

(Default is
Group 9/
Pattern E)

File: SingleAndMultipleChoiceUsingSelectGroupsExample.zip

Group / Pattern Selectable Multiple Select No Deselect Example
0/A no no no O O O
1/B yes no no O O O
2/C yes yes no O O O
3/D yes no yes O O O
4/E yes yes yes O O O
5/A no no no 0O 0O 0O
6/B yes no no 0O 0O 0O
7/C yes yes no 0O 0O 0O
8/D yes no yes 0O 0O 0O
9/E yes yes yes 0O 0O 0O

Buttons/ImageButtons I





EPUB/media/file401.png
Set Embedded Page Operator Example

[3] Show

Level 2, Page 1 Alternative

Page

[4] Hide
Alternative
Page

Show
File: SetEmbeddedPageOperatorExample.zip [1] Toggle Level 2 [2] Toggle Level 3 Rules...





EPUB/media/file342.png
& Set Variable attributes

Variable Details

Please specify the values to use for the Variable

Name ||

Value 0
Data Type | INTEGER v

OK

Cancel






EPUB/media/file292.png
i) AddNote

ients of type "Link"” can be formatte

erlined text e ’
[Click here fo link to "Page |  Fdt >
- ———— Delete from Diagram

—— X Delete from Model

Format >

Set Selected Background Color
Edit Text
Link Page

[ Show Propertes View

Properties






EPUB/media/file415.png
Timer Component Example

o0 00119

Stopwatch:

FSM Countdown: ‘

| i

File: TimerComponentExample.zip





EPUB/media/file231.png
[m] X

[ Properties x|

Q
#EYREE§ =0

® SingleLinelnputField

—
Core

Appearance

Property
Reference Template Name
~ Display
Border Color
Border Width
Cursor
Is Transparent
Selected Background Color
Use Default Link Color
Use Same Color For Visited Reference

Value

Show Advan:

ced Properties





EPUB/media/file512.png
O‘Om—s

x

+ v - O x

<« [} O B = hitps//github.com/krdemo/demo/settings/pages 8 w @ & O =

E O krdemo / demo.

<> Code @ Issues

8 General

Access
A Collaborators.

@ Moderation options.

Code and automation
¥ Branches

© Tags

6 Rules

® Actions

& Webhooks

B3 Environments

& Codespaces

1% Pull requests

IR RIBIAL. -

© Actions [ Projects @ Security | Insights %3 Settings

GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages from a GitHub,
repository.

Build and deployment
Source

Deploy from a branch ~

Branch
Your GitHub Pages site is currently being built from the gh-pages branch. Learn more.

P gh-pages~ | W /(root)~ | Save

Learn how to add  Jekyll theme to your site.






EPUB/media/file365.png
Applied Conditional Link Examples

Feedback Conditional links can be used to display feedback
directly following the answer to a question or task.

Conditional links can also be used to skip pages, for
example, when answering questionnaires. This can
be implemented with conditional links for forward
and backward navigation, as shown in this example.

Filtering

Conditional links can also be used to implement
response formats where multiple attempts are
possible.

Answer-Until-Correct

File: AppliedConditionalLinkExamples.zip





EPUB/media/file268.png





EPUB/media/file543.png





EPUB/media/file433.png
Cognitive Reflection Test

(1) Abat and a ball cost $1.10 in total. The bat costs a dollar more than the ball.
How much does the ball cost? cents

(2) If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines
to make 100 widgets? minutes

(3) In alake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days
for the patch to cover the entire lake, how long would it take for the patch to cover
half of the lake? days

(4) If John can drink one barrel of water in 6 days, and Mary can drink one barrel of water in 12 days,
how long would it take them to drink one barrel of water together? days

(5) Jerry received both the 15th highest and the 15th lowest mark in the class.
How many students are in the class? students

(6) A man buys a pig for $60, sells it for $70, buys it back for $80, and sells it finally for $90.
How much has he made? dollars

(7) Simon decided to invest $8,000 in the stock market one day early in 2008. Six months after
he invested, on July 17, the stocks he had purchased were down 50%. Fortunately for Simon,
from July 17 to October 17, the stocks he had purchased went up 75%. At this point, Simon has:

O a) broken even in the stock market O b) is ahead of where he began O c) has lost money

Next |

Source: Toplak, M. E., West, R. F., & Stanovich, K. E. (2014). Assessing miserly information processing: An expansion of the Cognitive
Reflection Test. Thinking & Reasoning, 20(2), 147—168. https://doi.org/10.1080/13546783.2013.844729





EPUB/media/file336.png
State Machine Debug Window

File: ShowHintStateExampleStateMachineDebugWindow.zip





EPUB/media/file158.png
Use Page Area on Multiple Pages (Page 1) page 2

This part is a
PageArea, which is
used

® |eft on "page1”

® right on "page2"

® |eft and right on
"page 3"

() Answer

Notes:

File: ReUsePageAreaOnPagesExample.zip





EPUB/media/file99.png
& Close project

Current project has changed. Do you want to save the changes before going on?

=0 w






EPUB/media/file561.png





EPUB/media/file286.png
Video Recording Example

Instructions: First, press "Start Recording” to
make a video recording. Then, speak into the
microphone / webcam and press "End
Recording" at the end. After a recording, it is
possible to listen to the recording again.

Start Recording I

File: VideoRecordingExample.zip





EPUB/media/file396.png
Dialog Operator Example

(X=60, Y=10) (X=0, Y=50) (X=390, Y=10)
Close Dialog "dialogleft" by Name ’ Close Dialog by Flags
Conditional
Links: Open Dialog Left Open Modal Dialog Open Dialog Right
(X=60, Y=10) (X=0, Y=50) (X=390, Y=10)
Close Dialog "dialogleft" by Name ’ Close Dialog by Flags

File: DialogOperatorExample.zip





EPUB/media/file221.png





EPUB/media/file469.png
Navigation Restriction Examples

Example 1

Example 2

Example 3

Example 4

Navigation is disabled until the audio file has been
listened to.

A warning is shown if the task is not answered (and no
navigation is possible).

A warning is shown if no text is entered (but continuing
is still possible).

Navigation is not possible in the first 5 seconds.

File: NavigationRestrictionExamples.zip





EPUB/media/file13.png
Do you know these types of fruit?
Please assign the appropriate names to the pictures by drag-and-drop!

Sharon fruit Medlar Quince Greengage

Not sure about the answers? Want to try again?
Check Answers





EPUB/media/file486.png
CBAI

temBuilder Item with Embedded GeoGebra Content

(using 1

ExternalPageFrame that includes the GeoGebra applet with additional JavaScript to collect data and uses the GeoGebra

runtime from https://cdn.geogebra.org/apps/deployggb.js. Note that dowloading the GeoGebra applet as "Offline Activity" requires

to agre

e to the terms of GeoGebra's non-commercial license.)

Change the radius r1 and r2 of the two circles to find the distance between the two points P1 and P2:

What is the distance between P1 and P2?

Info |





EPUB/media/file125.png
Hands-on: Create a Closing Page -- Start

Create a Closing Page

® 7/ Steps to create a Text-Entry Item in
CBA Item Builder

ldea
® Read the instruction on screen
® Try to implement the steps
® \Watch the video if necessary

This hands-on will take 10 minutes.

https://unsplash.com/photos/uvvvKneSp_U?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink

FullScreen Let's Start






EPUB/media/file311.png
Item lllustrating Clipboard-Commands

How to use the clipboard?

1) Select text in this InputField.

2) Use either the buttons "Copy" or "Cut" to insert the
selected text into the clipboard.

3) Use the button "Paste" to insert the text from the
clipboard at the current cursor position.

File: ClipboardExample.zip

Copy

g

Cut

Paste





EPUB/media/file400.png
® A: SimpleTextField configured as B
"Calculator Enginge Result" via
"Configure Input Source"

® B: SimpleTextField configured as c 7 8 9
Coatoulator Engings ok v calcOpnd(add, 7) | calcOpnd(add, 8) | calcOpnd(add, 9)
"Configure Input Source" 4 5 6

e C: Buttons linkt to events to trigger calcOpnd(add, 4) | calcOpnd(add, 5) | calcOpnd(add, 6)
FSM-operators for numbers, the 1 2 3
decimal separator and the equal sign calcOpnd(add, 1) | calcOpnd(add, 2) | calcOpnd(add, 3)

e D: Buttons for each operator (also 0 7/ =
linked to an FSM-operator) calcOpnd(add, 0) | calcOpnd(decimal)| calcOp(equals)

® E: Click here for memory, clear/reset, D ;

i X
special numbers, more operators calcOp(multiply) ’ calcOp(divide) ’
+ -
calcOp(add) ’ calcOp(subtract) ’

File: CalculatorOperatorsExample.zip





EPUB/media/file83.png





EPUB/media/file360.png
Drag-and-Drop Groups Created by Values Sy WET=

Reset Reset

] @
|
"~

Group A: Values 1, 2 and 3 Group B: Values 11, 12 and 13

File: DragAndDropGroupsExample.zip





EPUB/media/file174.png





EPUB/media/file108.png
] Button





EPUB/media/file559.png





EPUB/media/file409.png
File Edit Statemachine Editor

f=l

& CoA e Buider - NavigtelithSttesExample

Project Templates  Utiities Help.

EEEE@vedzEe s

[Quick Access|

=0

BE

v 2 NavigateWithStatesExam
[=] First [simple]
[=] Second [simple]

8 Stote Machine 23| 1

= O || D propertes 52 |

=0

75 Resource set

<

Selection| Parent] List| Tree  Table |

B pltformi/resource/NavigateWithStatestxam)
v 4 Machine

@ Start
New Child >
New Sibling >
Undo Set
Redo

iz
sy
cut

copy
Paste

[EN

R Delete
Validate

Run As >
Debug As >
Validate

Team >
Compare With >
Replace With >
Refresh

Show Properties View

Property
Name
Page
Type

o
Value
= ST First

NORMAL

EEE






EPUB/media/file309.png
Example of Task-Related-Commands

NEXT_TASK

BACK_TASK

CANCEL_TASK

From Dialog...

File: TaskRelatedCommandsExample.zip





EPUB/media/file215.png
@ “page.caml_diagram | [ HTML Text Editor £ |

= [ (@] (= o |

[
i}
[

e :z‘ e 45‘ - a,‘m‘imdnyﬂ
Sample Text






EPUB/media/file253.png
& CBA Item Builder - TreeViewExample - CAwork\github\ CBAltemBuiiderBook\ib\9_08\jtems\TreeViewExample.zip

File Edt Diogrom Broject Templates Utiities Help

EEe @R IBE

vz vBI|AY&r g7

MMIEED V|l @

5 [ Componenea]

<~ T [Frame] (I $211211119533269)

() [panel] (n: $498666513156700)
4 [HTMLTextFeld] (ID: $498666513200900)
4 [HTMLTextField] (ID: $498666513217400)
v [Tree] (ID: MyTree01)
~ ix [Types]
o) [TreeNodeType] Type (ID: NodeTypea)
1 [TreeNlodeType] Types (ID: NodeTypes)
I Thodes]
. [Treeliode] NI (ID: NodeN1)
& [TreeNode] N11 (ID: NodeN11)
& [TreeNode] N12 (ID: NodeN12)

~ & [TreeNlode] N3 (ID: Nodeti3)
' [Treeliode] N31 (ID: NodelN31)
v [Columns]
‘&< [TreeColumn] Name (ID: TreeColumnliame)
& [TreeColumn] Last Change (ID: TreeColumnLastChange)
&€ [TreeColumn] Ste (ID: TreeColumsize)
] [TreeView] (ID: TV)
=] [TreeChidArea] (ID: TCA)
& [HTMLTextFild] (ID: $750843946723600)
4 [HTMLTextFild] (ID: $750843946733100)
4 [HTMLTextFild] (ID: $750843946739700)

(@) “page.coam_diagram X |

TreeView Example

8| | [D: MyTreeo1
-> N1
-> N2
-> N3

maipsal]|

eanypIy0eal]






EPUB/media/file343.png
- O X

& CBA Item Builder - project

File Edit Project Templates Utilities Help
(0D eBEE0 @~ A Quick Access
SE.|8R.[ T O = B ||[Fel Variables £ = e
: - Variables
2 project
The upper section lists all available Variables and their Named Values.
Name  Value Type Declaring Component
vVarl 0 INTEGER
Visited 1 INTEGER
& Set Named Value attributes O X
Named Value Details
Please specify the values to use for the Named Value
Name NotVisited
Value 2
Data Type INTEGER v
OK || Cancel

Add Variable ' Add Named Value Edit Delete






EPUB/media/file270.png





EPUB/media/file326.png
& CBA Item Builder - HTMLButtons. o X
File Edit Source Project Templates Urilties Help
DeEeEEa 0YzEe S |Quick Access|
Proj.. M Co.. | Em. | = O |/ Tone 0thmi & =0
k1pocTYPE html> ~m
~ 4 extemalresources (1) < <htal> H
« & Toene 6) <meta charset="utf-8"/>
= <body>
T : o tie"audio™s
014 ® <source src="Tone_01.wav" type="audio/wav" loop="true">
3 Tone_02htmI <Jaudios - o
Tone_02wav
3 Tone_03htmI . <button style="width: 100px ; height: 76px;" onmousedown="document.getElementById(audio’).f
Tone_03wav onmouseup="document . getElementById(*audio") .pause() ;document . getElementById(*audio" )

“<script type="text/javascript”>

// This method should be called when the test ends.
7/ Tt will signal the end of the test to the wrapping CBA item.
function endSignalFunction()

// This varisble is used in the API's data structu

| Writable Smart Insert






EPUB/media/file179.png
Task: TaskO1 Page: page1
Page: xpage1

Task02 Link to "page2"






EPUB/media/file454.png
Alpha Image Example (PNG)

Blue:

Red:
J—

Blue behind red: Red behind blue:

The percentage values (100%, 75%, 50% and 25%)
File: AlphalmageExample.zip file. Images in PNG format.

indicate the alpha transparency defined in the image





EPUB/media/file142.png
& Poge Settings

Settings of a Page.
Please specify a name for the page. Click the ‘Show Advanced... button for advanced

options.

Page Name:

pagel

Fide Advanced,. | Advanced Settings

Page Type: |simple. v

Olktsndaidbagd






EPUB/media/file119.png
Hands-on: Create Multiple-Choice Iltem -- Start

Create Multiple-Choice Item ’

® 17 Steps to create a Multiple-Choice
Item in CBA Item Builder
® Scoring will also be included

ldea
® Read the instruction on screen
® Try to implement the steps
® \Watch the video if necessary

This hands-on will take 20 minutes.

https://unsplash.com/photos/uvvvKneSp_U?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink

FullScreen Let's Start






EPUB/media/file247.png





EPUB/media/file375.png





EPUB/media/file51.png
"~ A:Block with Linear Sequence of Tasks N

("B: Differentiation (Prologue/Main/Epilogue)

TASK(S), e.g., Items linear
TASK(S), e.g., ltems sequence

TEST PART “B”

Prologue TASK(S), e.g., Instruction
Main §TASK(S), e.g., Items } linear

TASK(S) e.g., ltems sequence

TASK(S), e.g., Farewell






EPUB/media/file522.png
check-out, update

Working
copy

i

add, commit

check-out, update

add, commit





EPUB/media/file34.png
Response Time Operationalization Example

Response Time for single items and single visits as the time an E e 1
item is visible on screen. Using the time in which an item is xample I

visible can result in time measures when no answer was given.

A Response Time could also be defined as the time until the last Example 2 I
response change. If no answer is given, this Response Time

operationalization is NA.

Further considerations on operationalization and specific definitions regarding
the response time are necessary if items can be visited several times or if
several items are presented on one page.

File: ResponseTimeOperationalizationExample.zip





EPUB/media/file171.png
Page: X1 Page: Page1 File: XPageSliderExample.zip
(X-Page) (Simple Page)

Layout Settings: | X-Page layout type:

oEE oFs
offy] oFf

X-Page size: | 100

4

Slider width: | 20

4

Slider color: —/

Go to Page 2 M Allow resize






EPUB/media/file244.png
Selectable HTMLTextFields Example (FSM Example)

HTML Text Field 01 HTML Text Field 02 Advanced Panel Properties:
e Selectable: true

HTML Text Field 03 HTML Text Field 04 o Nl 2 e
® No Deselect: false

HTML Text Field 05 HTML Text Field 06 e e AT
e Selectable: true

_ : ® Multiple Select Mode: true
HTML Text Field 07 HTML Text Field 08 o No Deselect: false
HTML Text Field 09 HTML Text Field 10 Advanced Panel Properties:

e Selectable: true

- ; ® Multiple Select Mode: false
HTML Text Field 11 HTML Text Field 12 e No Deselect: true

File: SelectableHTMLTextFieldsExample.zip





EPUB/media/file201.png
& Edit User Defined IDs o X
Edit a User Defined ID

Select the component to edit and hit the Edit button.

Page UserD Component Text/Label X Y ValueMap Event(s) Mouse Over Text

Page b33 RadioButton 0 0

Page h32 RadioButton 0 o

Page  th31 RadioButton [

Page 23 RadioButton 0 0

Page h22 RadioButton 0 o

Page  th21 RadioButton [

Page b13 RadioButton 0 0

Page rb12 RadioButton 0 o

Page b1 RadioButton [






EPUB/media/file465.png





EPUB/media/file422.png
ExternalPageFrame GetState / SetState Example

This is "page1".

myCheckBox UJ myTextArea 4

The method getState() is called automatically. The method setState() is called before navigating to a
different page (click button "Link to page2").

Link to "page2"

File: ExternalPageFrameGetStateSetState.zip





EPUB/media/file511.png
<«

E O DIPFtba / f:

<> Code @ Issues

08

> C

2pci
1% Pull requests

& fastib2pci  Puslic tempiste

¥ main ~

4 quark-s Update fastib2pciym

B githubworkflows
W items

B scipts

[ READMEmd

[} READMEimagepng

® Actions

B Projects [ wiki

Go tofile

Update fastib2pci.yml
seperate item folders
Update indexejs
Update READMEmd

Updated Description

https://github.com/DIPFtba/fastib2pci

Q Type (7 to search

@ Security |2 Insights

© Watch 1

Addfle~ | <> Code v

v dsa3b2e onMay 12 D) 95 commits

last month
6 months ago
6 months ago
10 months ago

last year

B % ® & 4

- Y Fok 0~

About

The repository fastib2pci is a template
repositiory that uses Github Actions to
create PCl components of CBA
ItemBuilder items.

[ Readme

Activity

1star

1 watching

< 0 B ¢

0 forks






EPUB/media/file325.png
& CBA Item Builder - HTMLButtons.
File Edit Diagram Project Templates Utilties Help
e E®mE @0 dzE e o Ak

Project View |l Component Edit| - Embedded HTML Explorer|

S enema gy New folder

@n? Open
# Open With System Editor
@) Addfiles

7@ Delete
@7y Rename






EPUB/media/file139.png
Example Item lllustrating all Page Types
using Different Tasks

Task name: TaskO1
Page type: Simple Page
Page name:page 1

Click here for a summary of tasks and page types.

Goto Task02 (lllustrating an xPage Layout)

File: ExampleTaskslllustratingAllPageTypes.zip





EPUB/media/file554.png





EPUB/media/file368.png
Use of Conditional Links with Operators

Use conditional links to set "Button 1" setFrozen(Button1) or unsetFrozen(Button1). Button 1
Use conditional links to set the value of variables: Increase the variable using the 0

In this example, a conditional link is used to select the radio button "RB_No" if the SingleLinelnputField
gets focused. This is possible since the operator setActive(RB_No) and setActive(RB_Yes) can be used
in conditional links, and because SingleLinelnputField allow to use conditional links.

O Yes. O No. Please Explain: Click here to select RB_Yes.
Using the operators setHidden(UserDefinedID) and
unSetHidden(UserDefinedID) also allows to hide and show Hide

selected components, for instance, an Panel.

File: UseOfConditionalLinksWithOperators.zip





EPUB/media/file496.png
CBA ltemBuilder Color Converter Helper

Convert Color Shown in CBA ltemBuilder Properties View:

CBA ItemBuilder Decimal Code |-1973881 | Convert

HIML Hex Color Code BTSN

File: CBAltemBuilderColorConverterHelper.zip





EPUB/media/file550.png





EPUB/media/file84.png





EPUB/media/file317.png
page1 page2 page3

TabFolderPage Example Page: page
(see also page2 and page3)

> Page 2
File: TabFolderExample.zip






EPUB/media/file267.png
]





EPUB/media/file372.png
v & project
(] page lsimple]

& CBA Item Builder - project - o x
File Edit Statemachine Edtor Project Templates Utiities Help

EEEE@veIzEe L [Quick Access]

[ Embed... | = O || StoteMachine 2 | State Machine Rules =8

25 Resource Set

~ [2] pltform/resource/project/project mfstatemachine

4 Machine

Seection]arent

[Tree bl Tree with Colurnns






EPUB/media/file224.png





EPUB/media/file92.png
& CBAItem Buider - roject_name - o x

Fle Edt Project Templtes Utiities Help
ODeEEH0 @rRMdzEe [Quick Access]
& [ o Variables 52 | =8
@] Varisbles 2
= - N
T S e N s
& Neme Value Type Declaring Component
5 Varizblel 1 INTEGER
Varizble2 true BOOLEAN
le Varizble3 Value of the varizble  STRING
Varizbled 314 NUMEER
v Variables 1 INTEGER
One 1 INTEGER
o 2 INTEGER

Add Variable | fAdd Named Value] | Edit | |Delete.






EPUB/media/file41.png
Navigation Example: Multiple Forced Choices

Press "Start" to start the example with multiple
forced choice questions per page. Make sure Start I
your computer can play audio.

File: NavigationExampleMultipleForcedChoices.zip





EPUB/media/file194.png
a
| % Delee from Disgrom copy
1 % Delete from Model @ Paste
Format >
Set Auto Layout
Link Resed Event
LinkImage
Set Cursor

[ Show Propertes View
Properties





EPUB/media/file37.png
Typical item formats are composed by single components, including Checkboxes,
Radiobuttons, InputFields and ImageMaps.

Type 1A (Figure 2) Examples from Scalise & Gifford (2006):

Type 1C (Figure 4)

Type 1D (Figure 5)
Type 2B (Figure 7) Every linear equation can be written in slope-intercept form.

Type 2C (Figure 8) O TRUE
Type 2D (Figure 9) O FALSE
Type 3A (Figure 10)
Type 3B (Figure 11)
Type 3C (Figure 12)
Type 4A (Figure 14)
Type 4B (Figure 15)
Type 4D (Figure 17) -
Type 5A (Figure 18)

Type 5B (Figure 19)

Type 6D (Figure 25)

Scalise, K., & Gifford, B. (2006). Computer-based assessment in E-learning: A framework for constructing” intermediate constraint” questions and tasks for
technology platforms. The Journal of Technology, Learning and Assessment, 4(6).





EPUB/media/file402.png
Example for Operators InitFsM () and raise () (page)

MyLink For the component of type Link with the text "MyLInk" @ | (,.ge:true|initFsm(zv 1))

Conditional Link with the following Condition is defined: -
Since the link is already displayed on the "page”, clicking on the component does not change the current
page. However, the event EV_1 is triggered via InitFSM(EV_1) and processed in the finite-state machine
with the following syntax:

Events: EV_1, EV_2; Var1=0
Rules: STistart7>ST7Running(true}
ST_Running internal {EV_1 : [round(Varl/2)*2==Varl] | set(Varl,Varl+l),raise(EV_2)}

(EV_1 : [round(Varl/2)*2<>Varl] |set (Varl,Varl+l)} Var2=0

{EV_2 | set(Var2,Var2+l)}

Only if the value of variable Var1 is even, another event is triggered during the processing of EV_1 with
raise(EV_2), which leads to the value of Var2 also being increased by one.

File: RaiseFSMEventsExample.zip





EPUB/media/file488.png
External Page Frame with SurveyJS

Example Survey (using SurveylS within CBA ItemBuilder)

Introduction

Using SurveylJS, the questionnaire or survey is defined as a JSON file that can be edited with
the web-based editor, available on https://surveyjs.io/create-survey (please see the license
conditions under which SurveyJS and the SurveyJS-editor are available). Once the JSON file
containing the survey definition is created, it can be embedded, together with the runtime
environment) as ExternalPageFrame into the CBA ItemBuilder.

Click "Next Question" to see an example question implemented using SurveyJS!

Next Question

File: ExternalPageFrameWithSurveyJS.zip





EPUB/media/file151.png
Frame and Panel Mouse Over Eample

Panel in Frame in the Page Area

Explore Mouse Over...

File: FrameAndPanelMouseOverExample.zip





EPUB/media/file538.png





EPUB/media/file481.png
Word Counter ExternalPageFrame - Example

The following example shows a TextArea that also records single keystrokes as log-events:

Total word count: 0 words.

File: WordCounterExternalPageFrameExample.zip





EPUB/media/file310.png
Example of Fullscreen-Commands

TRIGGER_FULLSCREEN

CANCEL_FULLSCREEN

File: FullscreenCommandsExample.zip





EPUB/media/file124.png
Text-Entry Task

Use the keyboard to provide an answer to the following question:

What is the "Answer to the Ultimate Question of Life, the Universe, and
Everything"?

The answer is





EPUB/media/file417.png
Task Initialization Example 1

Page Name: pageTask01

(& Tasks X = 0
[J Use first active hit per class (applies to all tasks). ] Use first active miss per class (applies to all tasks).
New Delete Open Add Hit Add Miss Edit Classes Previe Layout
o Name MinHits Start Page Start X-Page Scoring  Scored Task
Tk 1 @ ey
Task02 1 @ empty
NEXT-TASK Command

File: TasklnitializationExample.zip






EPUB/media/file159.png
[ | PageArea





EPUB/media/file57.png
4 H: Illustration of Computerized Adaptive Test Initialization N

BLOCK
Prologue TASK(S), e.g., Instruction
Mail
e If VPreloadGender == “Male”
= (Example for the definition of a
Set Variable | VThetaStart = 0.00 . .
unidimensional theta as test-taker
Else specific starting value.)
Set Variable | VThetaStart = 0.25
Set Variable | CATInitialization | = From ItemPool | Pre-Configured 01
CAT
Add to Dictionary | CATlnitialization | Key=| ThetaStart | Value= | VThetaStart ..(. .
Initialization)
Set Variable | CATSession | = ¢ Initialize | CATInitialization
While AND ( TestLength | CATSession | <| 10 N
(Termination
StandardError | CATSession | >=| 0.3 Criterion) (CAT
Loop)

<l-- See next Figure -->






EPUB/media/file450.png
Examples for Input Restrictions using Input Validation Pattern

Integer Number

[0-9r
Only Letters, Blanks and Digits

[a-zA-Z0-9]*
All Characters, Except Digits

[0-9]*

Decimal Number (with .)

([0-9](\.[0-9]?)?)?

Length Restricted Decimal Number (max 3 digits, with . or ,)

(({1,31)([.1.10d{0,2}))?)?
File: InputValidationInputFieldExample.zip





EPUB/media/file425.png
& Edit User Defined IDs o X

a User Defined ID
Select the component to it and hit the Edit button.

bage  Userld Component  Totsbel XV B MowseOverToxt
(page ™ hborsche " Chediger Borsche TS B A T coBoriche
page " cblaguar Cneckson Taguar 18 BV newer T chiaguar
page  cbeugot  CheckSon beugot 16 %6 EVAnswer Tip:chPeugot
page  chpands Chectson bands 16 121 EVAnswer Ti:chPanda

Edt  ()Show generated Defined IDs.






EPUB/media/file523.png
add, commit

pull, clone, [Repository|
(Local)

Repositoryly_,iNetwork|

(Remote) w_ﬂ
{Repository|
‘\push (Local)

add, commi






EPUB/media/file493.png
Window Management Video

The arrangement of views in
the three columns of the CBA
ItemBuilder’s user interface
can be adjusted and configured
according to the user’s needs
(and the available space on the
screen).

File: WindowManagementVideo.zip





EPUB/media/file116.png
® RadioButton





EPUB/media/file352.png
Show VaIueMaE|

Variable: V_Example = 1

Simple Value Display Example Traffic Light

Input: ScaleValueInput

Output: MapBasedVariableDisplay
Value Display Type:

Value Display Type:
AUDIO

Value Display Type: Value Display Type:
1 VIDEO

TEXT IMAGE

Red
> = )

File: SimpleValueDisplayExampleTrafficLight.zip






EPUB/media/file22.png
Quick Start: Explore Scoring - Example 1

Example with 3 questions on one screen:

Question 1: Single-Chocie Task - Select C

O Option A
O Option B
O Option C

O Option D
Variable1Score

Question 2: Multiple-Chocie Task - Select A and B

(J Option A
(J Option B
(J Option C

(J Option D Variable2Score

Question 3: Constructed-Response Task - Enter D

Variable3Score

File: QuickStartScoringExample1.zip





EPUB/media/file395.png
Example of Task-Related-Commands using (Task01/ page1)
Finite-State Machine and Conditinal Links

Finite-State Machine Commands

NEXT_TASK I NEXT_TASK I
BACK_TASK I BACK_TASK I

CANCEL_TASK I CANCEL_TASK I
i . From Dialog... I
File: TaskRelatedCommandOperatorsExample.zip





EPUB/media/file280.png
Video Format Tester | Next |
MP4
Play MP4 |

File: VideoFormatTester.zip





EPUB/media/file14.png
& CBA Item Builder

File Edit Project Iemplates Utilities Help

New project IBRld3zEe®

B Open project ded HTML Explorer| & Renderer
® Save

B SaveAs..

© Close project

Exit





EPUB/media/file271.png





EPUB/media/file100.png
& Runtime Code Generator X

Update of React runtime code failed! Please do a project preview and repeat the save:
operation.

——






EPUB/media/file453.png
Transparent Image Example
MapBased-
VariableDisplay

Panel TextField ImageField

IsTransparent=false

File: TransparentimageExample.zip

IsTransparent=true





EPUB/media/file410.png
@ ST Frst -> First

& Configure Sate

Confiure State Attributes
Please specifiy the values to use for the state.

State Type.
@NORMAL O START OEND

Name ST First

Pageto open






EPUB/media/file186.png





EPUB/media/file259.png





EPUB/media/file93.png
& CBAItem Buider - roject_name - o x

File Edt Project Templtes Utiities Help
0D 2B EE0 @R IBEe [Quick Acces3|
& 5 Value Maps 52 | =8
E s

This upper table st all available value maps. The table below shows the detait o the value map that s
] currently selected here.
B e
g M_SimpleMap
o

Add | [Edit| [Delete| [Up| [Down

Value Map Details

“This table shows the detail of the value map that is currently selected in the value maps table above.

Gurd Tt Image  Audio Video
I T

i Teted o

331 Atext for three to five.

. The defulttext






EPUB/media/file216.png
Aral v |10





EPUB/media/file380.png
Self-Transition vs Internal-Transition Example

EV_Toggle ‘ Current State: ST_InternalTransition

Events: EV Toggle, EV Timed 5; V_TickCounter:
Rules: ST Start -> ST SelfTransition{true}

3

ST SelfTransition => ST SelfTransition{EV Timed|

set (V_TickCounter,V TickCounter+1)}
ST InternalTransition internal{EV Timed|

set (V_TickCounter,V TickCounter+1)}

ST SelfTransition => ST InternalTransition{EV Toggle}
ST InternalTransition => ST SelfTransition{EV Toggle}

File: SelfTransitionVsinternalTransitionExample.zip





EPUB/media/file387.png
Example for setFrozen () /unsetFrozen ()-Operator

Finite-State Machine: myButton 0 myCheckBox

Set Frozen mylInputField O myRadioButton01
O myRadioButton02
O myRadioButton03

Conditional Link:

mySingleLinelnputField Item 1
Set Frozen myl—ink Oplion A
Main Menu ’ Option B
Option C

AlB|c]|D|

File: SetFrozenExample.zip





EPUB/media/file0.png





EPUB/media/file344.png
Illustration of Variable Inputs (Left) and Value Displays (Right)

Variablelnputs VariableValueDisplays
VariableValuelnput: 1 Variable: V_Example1
ScaleVariablelnput: Variable: V_Example2

Buttons Attached to -1 (Reduce | |+1 (Increase
ScaleValuelnput: by One) by One)
SpinnerVariablelnput: 1 S Variable: V_Example3

File: ValuelnputExample.zip





EPUB/media/file252.png
TreeView Example

N1
N11
N12

N2

N3
N31

L

File: TreeViewExample.zip

Name

Last Change

Size

LETE

ealyplIYDD0IL





EPUB/media/file468.png
Time Limit Example

This item shows an example of a time-constrained test part. The time
measurement starts as soon as the "Start" button is clicked. After that,
three items can be answered, but only as long as the specified time of 60
seconds has not elapsed.

Start

Note that the timer runs contiously even when navigating between tasks.

File: TimeLimitExample.zip





EPUB/media/file301.png
Components with Links Example

HTMLTextFields:  This is an HTMLTextField with an embedded Link.

ImageField:
TextFields:  This is a (Rich)TextField with an embedded Link. m
ComboBox: v Table: |A B
C Link
List: | List -- Item 1 SingleLinelnputField:
List -- Item 2 .
utton: Pkl
List -- Item 3 v Link! I
Menu: Vg 1 Menu 2 ’

File: ComponentsWithLinksExample.zip





EPUB/media/file295.png





EPUB/media/file472.png
Example for Strike-Through MC

To strike
Item 01 through an

item, please

click on it.
Item 02

To undo a

selection,
Item 03 please click

again.
Item 04

Click here and hit Ctrl+M to open the "State Machine Debug Window",
File: StrikeThroughMC zip which shows the values of the variable V_Item01-04.





EPUB/media/file167.png





EPUB/media/file480.png
Simple Example Showing the use of an |
to use CKEditor 4

B @ B o o M|
B I US x, x* I, 1= = Az | 99

This is the editor content.

File: ExternalPageFrameTextEntryExample.zip

Q

LY
N

ExternalPageFrame

Quellcode

Formet

D





EPUB/media/file294.png
&

Link Page
Please specify the target page and the color atributes for thelink representation.

ink Page.

Not visited link color
Use defautt color for not visited links

Select page

 — (ERED
(@ Use default color for visited links.

O Use same color as for not vsited inks.
(O Use explict colorspecifed here:

Edit Condition | | Drop Condition






EPUB/media/file251.png
& Toble Propertes

CBA Table Properties Editor
Please edit the properties for the table.

Rows 1

Columns 1

Default Cell Background Color —

OStandard O Spreadsheet

Standard Spreadsheet

Default Cel Border Wicth 0

Default Cell Border Line Color [N o
(O)Select enabled OMultiple Select (| Standard Tool Tip

o






EPUB/media/file367.png





EPUB/media/file138.png
Page 1

Page 2

Page 3






EPUB/media/file553.png





EPUB/media/file324.png
& SetURL

Set the URL providing content for this component
Please specify the URL of the page that this component should display.

Local
Load a URL provided by sources inside our project.

®Local  you have to choose one of these URLS here:
Toene/Tone_01.html

External

Load an external URL.
o You have to specify the URL provided by an extemal
Bxtemnal cerver here:

ur: | httpy/

oK






EPUB/media/file551.png





EPUB/media/file502.png
& CBA tem Builder - demo - o x
File Edit Project Jemplates Utiities Help
C0eEMN0 @R ¥IZEeRD Q
& “Proj...| . Emb... | & Rend..| = O |[= Template Browser x | =8
— & || pagename: & Aesgin XPage tag: @ Assgin StandardPage tag: @
Skip Preview: (]
Available templates Template Preview
mytemplated!
pempi A
Hands-on: Conditional Link
Q1: Answer Question 1 with yes or no:
Yes
No
=0
Q2: Answer Question 2 with 42.
Import template .. | | Delete templte. Type the answer: Check!?| ¥
Exporttemplate... < >
Creste page | Cancel






EPUB/media/file330.png
v Misc

Closable = true
Diclog. DIALOG v
Is Frozen L
b Text

Url Text





EPUB/media/file144.png
& CBA Item Builder - demo.
iCOol=sl

UtiitiesHelp.

e - =l Ar =]

[=] page! [simple, standardPage]

E R4

B Component Edit| [ Embedded HTML...

7 Renders] =

= B 7| A~H s —|@| RivBise| | B ~|[100% V|| @ [QuickAccess]
& “Project View, < = O || @ pagel.chaml diagram 33 | =8
v & demo b






EPUB/media/file373.png
& CBA Item Builder - project

File Edit

Statemachine Editor Project Templates Utilities Help

@ *Project
& proje

0 5l = [ e i S st

Validate

Refresh
Show Properties View

4 State Machine # | & State Machine Rules

[ Resource Set

~ B platform:/resource/Projects/global.emfstatemachine
4 Machine VERSION 01 01

Undo
Redo

Cut
Copy
Paste

% Delete
Validate
Run As
Debug As
Validate
Team
Compare With
Replace With

Refresh
Show Properties View

Ctrl+Z
Ctrl+Y






EPUB/media/file545.png





EPUB/media/file187.png





EPUB/media/file79.png
100%






EPUB/media/file288.png
Links and Conditional Links Example

Page A

This page contains a

It_)ult(tct)n with aBsimpIe The linked page B contains three links:
Ink to page b. e Asimple link to page A.
e A conditional link that always links to page A.

. e A conditional link that links to page C if a
(Static) Link to Page B checkbox is selected (or to page A).

File: LinksAndConditionalLinksExample.zip





EPUB/media/file431.png
Scoring Introduction - Example 2

Instruction: How do agree to a statement?

O Strongly Disagree
O Disagree

O Neutral

O Agree

O Strongly Agree

Hit (Name)
ResponseStronglyAgree
ResponseAgree
ResponseNeutral
ResponseDisagree
ResponseStronglyDisagree
StyleAgreement

StyleNA
StyleDisagreement

ResponseMissing

StyleMissing

Class
Response
Response
Response
Response
Response
Style
Style
Style

Response

Style

File: ScoringlntroductionExample2.zip

This example item illustrates how hit
conditions can be used to create two
classes (i.e., variables):

® Response: Selected answer
® Style: Agree vs. Disagree

Syntax (Condition)

rbStrongl

rbAgree

rbNeutral

| yAgree

rbDisagree

rbStrongl

(rbAgree

rbNeutral

lyDisagree

or rbStronglyAgree)

(rbDisagree or rbStronglyDisagree)

not ((((rbStronglyDisagree or

rbDisagree) or
rbNeutral) or
rbAgree) or
rbStronglyAgree)

(JueAs|a.ul SI SUOIIPUOI 1Y JO 19pJO)
sse|o Jad s)iy aAIsn|oxa Ajjeniniy





EPUB/media/file245.png
File | Edit |Help |

MenuBar and Menu Example

Large Menu I Small Menu I
Menu with Images I

File: MenuBarAndMenuExample.zip





EPUB/media/file495.png
Choose Color
Swatches HSV HSL RGB CMYK

[

Preview

a - W Sample Text Sample Text

‘Sample Text Sample Text.
L] femoreme
ok || cancel || Reset Delete






EPUB/media/file101.png
Preview fails because your item i
describe here:

onsistent, Please try to fix the problem we

“The rule file contains errors. Please open the rules in the editor and solve all red error

markers.

“This is the path to the place where we found the problem:
tasktask)
in hit hit0

-






EPUB/media/file91.png
& CBA Item Builder - project name

- o x
File Edit Project Jemplates Utiities Help

EEEEE@vQIzEe L [Quick Access]
& |8 Tosks 33 | =08 |s
= ]
B Tasks &
&

New Delete Open ‘Add Hit AddMiss | [ Edit Closses | [ Preview Layout

Name MinH... StartPage Start X-Page Scori.. Scored Task

~ Hits

Delete Open * ¥

Name Weight  Class






EPUB/media/file85.png





EPUB/media/file489.png
& CBA Item Builder - ExternalPageFramelithSurvey)s
File Edit Source Project Templotes Utiities Help

EE@vedzEe L

[Quick Access|

Bco. | Em. | = O |[B indechimi 53]

=0

var surv
v [ extemnal-resources (1)

v [ sueyls ()

eyISON = {
"Example Survey (using SurveyJS w:

v “completedHtml": “Thank you.",
L indexhtml “pagosn: [

W inputmasks

;""‘"’:ﬁ ame”: “page

e elements™: [

T surveyjquenyminjs -

B surveyjs-widgets s ml®,

uestionl”,
hi>Introduction</h1>\n<p>Usir

Waae [ smanien

[7es






EPUB/media/file42.png
Blocked ltem Reponse: Different Response Formats

Single Choice (RadioButtons) I
Single Choice (Checkbox) I
Multiple Choice (RadioButtons) I
Multiple Choice (Checkbox) I

File: BlockedltemResponseExample.zip





EPUB/media/file403.png
SetFSM-Operators Example (paget)

setFSMEvent ()-Operator:

Set Slow ’ Set Fast ’ Timer Value: 3

setFSMState ()-Operator:

Assigned Pages: Current State: ST_NavigationPage1
ST_NavigationPage1 =>page1
ST_NavigationPage2 =>page1 Remain Page1 Alter Pages

File: SetFSMExample.zip





EPUB/media/file318.png
Task Bar Example

Page: startpage
(Is Transparent: True; Border: 1)

File: TaskBarExample.zip

pagel

page2

startpage page 1 page 2






EPUB/media/file539.png





EPUB/media/file193.png
v Position
Height
Width






EPUB/media/file150.png
£ Panel





EPUB/media/file388.png
Example for setHidden () / unsetHidden ()-Operator

Finite-State Machine: myTextField myLink 0
myHTMLTextField
; myButton
Set Hidden mySimpleTextField Y 0
- - (J myCheckBox
mySingleLineln,
= O myRadioButton01 0 0
mylInputField (O myRadioButton02
Conditional Link: (O myRadioButton03 ol
Item 1 v

Set | lidden
e - Main Menu
AlB[C|D] wy

File: SetHiddenExample.zip ExternalPageFrame-

v





EPUB/media/file239.png
ComboBox

File >

Edit >
Delete from Diagram
Delete from Model

Select >

Arrange All
Filters >

&E R

(9]

‘Add Combo Box ftem
Link Image
] Show Properties View

Properties






EPUB/media/file345.png
lllustration of Variable Inouts (Left) and Value
Variablelnputs VariableValue

VariableValueinput | A/ Evam | Variable V Fxamolet K/
v
b . Add Note

osesaegs YV N j
Butions Aftachec -1 (Re i N
t ScaleValielne .
Delete from Diagram
SpinnerVariableinput | \/ [ % Delete from Model j
File: ValuelnputExample.zip Format >

Set Auto Layout

Set Cursor

1 Show Properties View
Properties






EPUB/media/file272.png
Advanced ImageMap Example

Find the Triange!

File: AdvancedlmageMapExample.zip





EPUB/media/file302.png
page: X1 (X-page) page: Page1 File: XPageAndPageLinkExample.zip

XPageAndPagelinkExample XPageAndPagelinkExample
[5d X1 [simple] [3d X1 [simple]
(=] Pagel [simple] [&] Pagel [simple]
[&] Page2 [simple] (] Page2 [simple]
[3d X2 [simple] [3d X2 [simple]

(| Dialog1 [simple]

Dialog1 [simple]

] (1]

@ XDialog1 [simple] | XDialog1 [simple]
Event Link to Link to Event
"EV_X2" "XDialog1" "Dialog1" "EV_Page2"

Link to "X2" Link to "Page2"





EPUB/media/file166.png
Tasks

New Delete Open Addbit || AddMiss | | EditClasses
Name Mint... Start Page Start X-Page Scored Task
N D






EPUB/media/file58.png
4 I: Hlustration of Computerized Adaptive Test Loop

<!l-- See previous Figure -->

While AND ( TestLength | CATSession | <| 10
StandardError | CATSession | >=| 0.3
Set Variable | Selectedltems | =  Select Items | CATSession

Set Variable | SelectedltemsResults

Final Ability Estimates

Epil
PIogUe ITaSK(s), e.g., Break

Update Ability Estimates

# Optional Steps (e.g., Scoring of Open-Ended
Text Responses using NLP Techniques)

Show Items from List
Can Navigate Back

Selectedltems

Selectedltems

SelectedItemsResults

CATSession

Selectedltems

SelectedItemsResults

CATSession






EPUB/media/file117.png





EPUB/media/file15.png
& CBA Item Builder - demo

File Edit Project Templates Ui

ColaR

@ *Project v

v & demo
=l pa¢

ies  Help

Preview project

Refresh active editor layout derer

F@g

Import external variables

New page
New page from template
Import page

Import external content

Import XLIFF
Verify text translation

Finalize translation

Edit all text blocks
Edit all text fields
8 Compone # Edit all user defined IDs

Update rich text displays
Browse resources
Browse Task and Item Score

Browse Value Maps
Edit State Machine

L]
=)
=]
=]
k4
7
v
7
7
7
7
¥
@
=]
@

Browse Variables





EPUB/media/file266.png





EPUB/media/file223.png





EPUB/media/file567.png
TextField, HTMLTextField, SimpleTextField

TextField TextField (Highlightable) HTMLTextField HTMLTextField (Selectable) SimpleTextField
TextField (Frozen)
SingleLinelnputField, InputField Button
InputField InputField (Frozen) SingleLinelnputField Button ’ Button (Toggle) ’
Link, CheckBox, RadioButtonGroup, ComboBox, List, MenuBar
Link (J Checkbox O RaidoButton Combobox v | | Listl

Menu1 ’ Menu1
List2
VariableValuelnput, ScaleValuelnput, SpinnerValuelnput, VariableValueDisplay, MapBasedVariableDisplay, Timer
0 ; 0 o3 P ? 00:19
Rectangle, Line Horizontal, Line Vertical ImageField, ImageMap Tree, TreeView, TreeChildArea
@ [E N1 Name Last Chan... Size
N11
Panel, ExternalPageFrame, PageArea f E v N12
N2
- A v
} o v
Audio, Video, Table, TableCellEditor
W | |
B [c b B [c
X « 1. o A A
2 2
3 3

> 0:00 = ) > )





EPUB/media/file418.png
ExternalPageFrame - Template

JavaScript API Example

Post trace H Post variable->3 H Post get variable H Post FSM event

File: ExternalPageFrameTemplate.zip

Width: 800 x Height: 600

Check:

1) The button Update state
increases a click counter by
one at a time. After unloading
the ExternalPageFrame by
clicking Go fo "page2” and
returning to this page, the click
counter must be restored.

2) The current value of VarA is:
0 =

Change the value and see how
the button Post get variable
can be used to read and the
button Post variable -> 3 can
be used to set the variable.
Click Strg/Ctrl + M to see the
variable in the State Machine
Debugger.

3) Click Post FSM event to
trigger an event that opens a
dialog.

4) Click Post trace and open

the Trace Debugger by
pressing Strg/Ctrl +Y.

Go to "page2" |





EPUB/media/file524.png
Stage a file

Add a file Commit a file

Remove a file






EPUB/media/file351.png
& Value map entry

Set value for column Guard

Please specify the guard condition.

O Default
O Single Value Value: 1

® Interval From: 10 To: 15|

OK

Cancel






EPUB/media/file394.png
Example for Operators for Frame Select Groups

Components assigned to "Frame Select Group 0"

@® Radio Button 1

(O Radio Button 2 setSelectable ()

(] Check Box 1 unsetMultiselect ()

Check Box 2

Button 1 (Toggle: true) ’

| utonz(lwleitue) etiopeszLect ()

File: FrameSelectGroupOperatorsExample.zip





EPUB/media/file202.png
Lines, Borders and Rectangle Example

Horizontal Line Panels Rectangle

Vertical Line

5 10 1 2 3 5 10

1.2 3 5 10 1 2 3

File: LineAndRectangleExample.zip





EPUB/media/file503.png
- o x

oA tem Buider - demot o x CBA tem Bulder - demo?
Fle Edt Disgom Project Tomplotes Utles Help Fle Edt Disgom Project Tomplotes Utles Help
Cp BB B0 @SR ¥IBE@®RE: &~ 2| Bi-8-||ox v @ Q | [CEa EEO\DE@B\QQE'ID & - g -] B~ o8 - |[100% vlm a
(& “Project .| Embedd.. | £ Renderer| = 1 |[ @) “paget.chami_diagram x | = 8| |&@Proje.. | = Embe... [& Rende... @ “paget.cbaml diagram X | =8
i bt g
~ &= demol . H W ~ & demo2 .
S First Instance s S Second Instance
. I HMUTedF..
-Djetty.port=7070 gt _Di = Dot
Jety-p oy Djetty.port=7071 | sr
5] nputficld 5] nputficld
ot ot
Dsuton Dsuton
CheckBox CheckBox
© RodioButton © RodioButton
Rodiouto..
CombaBox
[ Component Edt o B Lt [ Component Edt o
< T TFrame] (0,0) Bvenssr | el 0,00
~ (@ [Panell (0,0)  Vatablelalu... O Panell (0,0)
4 HTMLTextField] (12,12) ] ScaeValue.. 4 HTMLTextField] (12,24)
[ spinnervelu...
L Verbletlu..
41 MapBasedV...

© Timer






EPUB/media/file546.png





EPUB/media/file1.png





EPUB/media/file70.png





EPUB/media/file430.png
‘Scoring Debug Window ®

Exscuton Time: Tota it Toral Weighe
Reaction Time: 037 Total misssrToal Weight
N of Inerscions:

Resuttex:

s s

[
et o s ith
ne name S





EPUB/media/file473.png
Shuffle Response Options Example Shuffle

The CBA ltemBuilder does not explicitly support the representation of answer alternatives
in random order (shuffling). However, the functionality can be implemented using
MapBasedVariableDisplays.

What is your favorite animal?
Cat [Option 4]

Horse [Option 3]

Bird [Option 2]

Dog [Option 1]

OO00O0

File: ShuffleResponseOptionsExample.zip





EPUB/media/file467.png
Show Additional Information Examples

Example 1: Click the button to see more
information (using a dialog without border).

more

Example 2: Click the question mark to see more
in